SQL: Instrução CASE

O comando CASE do SQL permite substituir observações com base em uma condição, por exemplo, a categorização de valores numéricos, ou seja, transformar os intervalos de números em valores categóricos. Vamos entender melhor sobre essa instrução no post de hoje.

Vamos utilizar o dataset weather_stations. Na coluna wind_speed, temos a velocidade do vento reportada em valores numéricos e queremos transformar estes valores em categorias. Mas como?

No comando acima, selecionamos as colunas e utilizamos CASE para criar uma série de linhas com as condições. As condições são criadas com os comandos WHEN, THEN e ELSE.

Podemos ler a segunda linha como: caso sos valores da coluna wind_speed sejam maiores ou iguais a 40, então serão substituídos pela palavra ‘HIGH’.

E assim continuamos na terceira linha: caso os valores da coluna wind_speed sejam maiores ou iguais que 30 E (AND) menores que 40, então serão substituídos por ‘MODERATE’.

Se nenhuma das condições forem satisfeitas, então (ELSE) substituiremos pela palavra ‘LOW’.

E para fechar a instrução CASE utilizamos END renomeando a coluna com AS.

Toda a condição é feita de baixo para cima, ou seja, primeiro todos os valores maiores ou iguais a 40 serão substituídos, e então a próxima condição é iniciada.

É importante saber dessa questão, pois dessa forma podemos alterar os código retirando o comando AND da quarta linha.

Agrupando a instrução CASE

A partir dos valores criados pelas condições, é possível realizar cálculos agrupando-as

Truque do “Zero/Null”

Com o CASE, podemos agregar os dados com diferentes filtros em uma só consulta. Se utilizarmos apenas WHERE, teríamos que realizar duas consultas diferentes. Vejamos:

Precipitação com tornado

Precipitação sem tornado

Agora com CASE:

Podemos utilizar outras funções como MAX ou MIN e utilizar a condição com NULL ao invés de 0 para certificar que nenhum valor será garantido

Da mesma forma que o comando WHERE, é possível utilizar uma expressão Boolean em uma instrução CASE, incluindo funções e AND, OR e NOT.

Vamos analisar abaixo a temperatura média por mês quando rain/hail (chuva e granizo) estiveram presentes após os ano de 2000.

____________________________________________________

Quer aprender mais?

Veja nosso curso de SQL para Economia e Finanças, onde ensinamos todo o processo para aqueles que desejam entrar na área. O curso faz parte da trilha Ciência de Dados para Economia e Finanças.

_________________________________________

Referências

Nield, Thomas. Getting Started with SQL: A Hands-On Approach for Beginners. O'Reilly Media, Inc., 2016.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

O que é GraphRAG e implementar usando LangChain

GraphRAG é uma técnica de recuperação de informação para LLMs que utiliza grafos de conhecimento para conectar entidades e relações, permitindo estruturar informações complexas presentes em textos. Neste exercício, mostramos como transformar as atas do Copom em um grafo capaz de compreender essas entidades e relações, respondendo a perguntas complexas de forma contextualizada. Com Python e LangChain, todo o processo se torna automatizado, simples e altamente explorável.

Shiny + Agentes de IA: como criar aplicativos web inteligentes

A combinação de interfaces de usuário interativas com o poder dos grandes modelos de linguagem (LLMs) está abrindo um universo de possibilidades. Imagine criar um aplicativo web que não apenas exibe dados, mas também conversa com o usuário, respondendo a perguntas complexas com base em uma base de conhecimento específica. Usando Shiny para Python e ferramentas de IA como as do Google, isso é mais acessível do que nunca.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.