IPCA de outubro surpreende mercado, mas fica em linha com a previsão da Análise Macro

O IBGE divulgou recentemente os dados de inflação de outubro/2024. A previsão da Análise Macro em 14 de setembro era de um aumento do IPCA em 0,48% para o mês de outubro, com viés altista, enquanto que o indicador mostrou uma variação de 0,56%, puxado por despesas com habitação. Por sua vez, a previsão de mercado em 13 de setembro era de 0,31% de aumento na inflação, de acordo com o relatório Focus/BCB.

O modelo de previsão para o IPCA produzido pela Análise Macro considera uma grande variedade de indicadores, tais como:

  • Preços de commodities
  • Mercado cambial
  • Expectativas
  • Inércia
  • Dentre outros

Dentre os modelos trabalhados, que variam em abordagens estatísticas, econométricas, de machine learning e inteligência artificial (IA), destacam-se os resultados de alguns, como:

  • Regressão Ridge
  • Regressão Huber
  • Regressão Bayesiana
  • Modelos Ensemble
  • Modelos de IA (Gemini)
  • Dentre outros

Nosso melhor modelo erra, em média, apenas 0.02 pontos percentuais a cada mês. Para aprender a produzir modelos como este, o curso de Previsão Macroeconômica usando Python e IA ensina como coletar, tratar, analisar, modelar os dados e, por fim, produzir previsões acuradas para indicadores macroeconômicos do Brasil e apresentar resultados. No curso também ensinamos a automatizar todo o processo.

Para o final do ano, a previsão corrente é de que a inflação continue aumentando. Para acompanhar as previsões da Análise Macro, acesse nossa dashboard com os principais modelos nesse link: https://analisemacro.shinyapps.io/previsao_macro/

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Um modelo explicativo para a inflação de alimentos

É notável que os preços de produtos alimentícios subiram consideravelmente nos últimos anos. De 2010 para cá a inflação de alimentos foi de 211%, enquanto que a inflação cheia foi de 138%, uma diferença de ~4.9% por ano. Aquela estourou o intervalo da meta de inflação em 13 anos, enquanto esta estourou 5 anos. O que explica esta diferença gritante?

Como resolver problemas de multicolinearidade em modelos preditivos?

O VIF é uma estatística útil para identificar multicolinearidade em regressões. Esse problema gera, dentre outros, erros padrões maiores, o que pode impactar os intervalos de confiança em modelos preditivos. Este Neste artigo, mostramos seu cálculo, a interpretação e uma aplicação em Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.