Mensuração de riscos inflacionários com regressão quantílica no R

Toda análise ou previsão da inflação tem um grau de incerteza devido à dinâmica complexa da macroeconomia. Entender e monitorar os fatores e cenários que podem levar a um maior risco de inflação futura é, portanto, crucial para economistas e analistas de mercado.

Para obter uma compreensão mais aprofundada sobre fatores associados ao risco de inflação futura, métodos tradicionais, como Curva de Phillips, podem ser limitados. Em geral, as análises tradicionais focam em entender e projetar o comportamento esperado médio da inflação. Dessa forma, desconsidera-se todo o restante da distribuição dos dados, o que acaba limitando a análise ao não evidenciar casos extremos, ciclos e as relações entre os fatores relevantes.

A regressão quantílica, por sua vez, é uma abordagem alternativa e interessante para analisar os fatores associados ao risco de inflação futura. Este método estatístico possibilita estimar um modelo para percentis específicos da distribuição dos dados, como a mediana, o P25 ou o P75, por exemplo. A vantagem desta abordagem é a possibilidade de analisar a inflação em diferentes regimes, seja quando a inflação está próxima à meta ou quando o nível de preços está descolado do objetivo.

Algumas perguntas interessantes que esta abordagem permite responder são:

  • O câmbio tem mais impacto sobre a inflação quando a inflação está elevada?
  • Como a inércia inflacionária se comporta em regimes diferentes de inflação?

Dessa forma, neste exercício mostramos o caminho para estimar uma Curva de Phillips Quantílica (CPQ) para o Brasil usando a linguagem R.

Curva de Phillips Quantílica

O modelo de regressão quantílica aplicado à Curva de Phillips para o Brasil pode ser representado da seguinte forma, conforme BCB (2023):

onde:

O modelo é estimado utilizando o pacote quantreg no R com parâmetros irrestritos e os resultados são apresentados na tabela abaixo. As colunas representam o quantil 𝑄𝜏 modelado.

Estimação da Curva de Phillips Quantílica

Podemos perceber que, para a mediana da distribuição (𝜏=0,50), a inflação passada possui cerca de um sétimo da magnitude do coeficiente da inflação esperada, ressaltando a natureza forward-looking do comportamento da inflação no horizonte ℎ=12. O impacto da inércia inflacionária sobre a inflação aumenta no último quantil conforme o modelo considera um regime de inflação mais alto.

Por sua vez, o hiato do produto desempenha um papel importante sobre a inflação quando ela está baixa, mas perde um pouco de sua relevância quando a economia passa por alta de inflação, situação na qual a volatilidade cambial passa a ter maior influência. De forma semelhante, a inflação importada parece ter algum impacto apenas em regimes de taxas altas de inflação.

Conclusão

O câmbio tem mais impacto sobre a inflação quando a inflação está elevada? Como a inércia inflacionária se comporta em regimes diferentes de inflação? Estas e outras questões macroeconômicas podem ser respondidas com análises de riscos através de regressão quantílica. Neste exercício mostramos o caminho para estimar uma Curva de Phillips Quantílica (CPQ) para o Brasil usando a linguagem R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Medindo o Hiato do Produto do Brasil usando Python

Uma medida extremamente importante para a avaliação econômica de um país é o Hiato do Produto. Neste post, realizamos uma comparação das diferentes formas de estimação dessa variável não observável utilizando o Python como ferramenta de análise de dados.

Como analisar a contribuição para a Volatilidade de uma carteira de ações usando Python

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

Analisando o impacto fiscal de propostas legislativas com IA

Todos os anos milhares de proposições legislativas são geradas na Câmara dos Deputados e Senado Federal, o que dificulta o trabalho de monitoramento feito por economistas, jornalistas e analistas de mercado. No entanto, ao empregar técnicas de engenharia de prompt e IA, podemos analisar estas milhares de proposições em questão de segundos. Neste exercício mostramos o caminho para esta automatização usando o Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.