PIB do terceiro trimestre surpreende a todos

Os resultados do PIB divulgado pelo IBGE para o terceiro trimestre do ano mostraram que a economia permanece bem aquecida, mas menos do que o mercado esperava. Internamente na Análise Macro, nossos modelos projetavam um crescimento menor do que o ocorrido. O hiato do produto positivo ajuda a explicar as surpresas.

O PIB cresceu 3,1% nos 12 meses encerrados em setembro de 2024, enquanto que o mercado esperava um crescimento de 3,5% e a Análise Macro um crescimento de 2,6%, assumindo 15 de novembro como data de previsão. Em termos de erro absoluto de previsão, nosso melhor modelo teve desempenho levemente inferior para este período de referência:

Nosso melhor modelo utiliza apenas 3 variáveis exógenas e defasagens para projetar a atividade econômica. Dessa forma, apesar do desempenho inferior no período, pode-se dizer que um modelo simples de projeção está bem próximo ao que profissionais de mercado utilizam. O fato de a economia estar operando acima do seu potencial pode ajudar a explicar estes erros:

Para os próximos trimestres esperamos uma atividade econômica ainda bastante aquecida, em ritmo maior do que as previsões de mercado.

Conclusão

Os resultados do PIB divulgado pelo IBGE para o terceiro trimestre do ano mostraram que a economia permanece bem aquecida, mas menos do que o mercado esperava. Internamente na Análise Macro, nossos modelos projetavam um crescimento menor do que o ocorrido. O hiato do produto positivo ajuda a explicar as surpresas.

Para aprender a produzir modelos como este, o curso de Previsão Macroeconômica usando Python e IA ensina como coletar, tratar, analisar, modelar os dados e, por fim, produzir previsões acuradas para indicadores macroeconômicos do Brasil e apresentar resultados. No curso também ensinamos a automatizar todo o processo.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.