Modelos ARIMA com o Python

Modelos univariados são bastante utilizados para fins de modelagem e previsão de um amplo conjunto de variáveis. Nesse post, vamos ilustrar a aplicação desses modelos sobre a inflação brasileira medida pelo IPCA utilizando modelos do tipo ARIMA

Criando um Modelo AutoArima no Python

Para criar uma previsão do IPCA usando o Python, devemos proceder através do processo de Análise de Dados, seguindo os seguintes passos:

  • Coleta do IPCA: utilizaremos a biblioteca python-bcb para retirar os dados do IPCA mensal direto do SGS, por meio do código 433;
  • Tratamento e Data Wrangling: Para fins de criação e utilização da biblioteca statsforecast devemos formatar os dados em uma forma ideal, bem como realizar a separação de dados de treino e teste;
  • Análise exploratória: Averiguar por meio de estatísticas descritivas e gráficos o comportamento do IPCA;
  • Modelagem e Previsão: criação do modelo e previsão.

Começamos com o processo de coleta dos dados e tratamento dos dados do IPCA, como demonstrado no código abaixo:


# Coleta do IPCA
ipca_raw = sgs.get(('y', 433), start = '2004-01-01')
# Tratamento do IPCA
ipca = (
    ipca_raw
    .reset_index()
    .assign(unique_id = 'ipca')
    .rename(columns = {'Date' : 'ds' })
)

O objetivo portanto, a partir da coleta e tratamento dos dados, será o de separar a amostra da série do IPCA mensal em teste e treino, utilizar a biblioteca statsforecast para rodar um AutoArima nos dados de testes.

Para entender todo o processo listado acima, com os códigos e video-aula, faça parte do Clube AM, o repositório de código da Análise Macro, contendo exercícios semanais de R e Python.

Vemos o resultado da previsão do AutoArima comparado com os dados de teste:

________________________________________________

Quer se aprofundar no assunto?

Alunos da trilha de Ciência de dados para Economia e Finanças podem aprender a como construir projetos que envolvem dados reais usando modelos econométricos e de Machine Learning com o R.

Referências
Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Ancoragem de Expectativas da Inflação no Brasil: uma avaliação utilizando a linguagem de programação R

Expectativas ancoradas significam que a inflação permanece próxima da meta mesmo após choques relevantes, tornando menos custosa a atuação do Banco Central no combate a pressões inflacionárias. Neste exercício, analisamos diferentes medidas para avaliar a ancoragem das expectativas no Brasil, utilizando a linguagem de programação R como ferramenta para a construção desse exercício, realizando a coleta, tratamento, cálculos e visualização dos resultados.

Como fazer previsões para a inflação desagregada medida pelo IPCA?

Neste artigo investigamos se a previsão desagregada da inflação é capaz de gerar previsões mais acuradas do que a previsão agregada. Utilizamos o Índice Nacional de Preços ao Consumidor Amplo (IPCA) como medida de interesse, aplicando um modelo simples e um modelo de passeio aleatório para comparação. Todo o processo pode ser feito de maneira automatizada utilizando a linguagem de programação R.

Qual o melhor modelo para prever a inflação medida pelo IPCA?

Neste exercício, testamos 18 modelos diferentes com um conjunto fixo de regressores para previsão da taxa de inflação, medida pelo IPCA. Implementamos o método da validação cruzada, visando obter resultados robustos para comparação de métricas de performance. Apresentamos os resultados gerais e desagregados por horizontes de previsão, além de automatizar todo o processo utilizando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.