Modelos ARIMA com o Python

Modelos univariados são bastante utilizados para fins de modelagem e previsão de um amplo conjunto de variáveis. Nesse post, vamos ilustrar a aplicação desses modelos sobre a inflação brasileira medida pelo IPCA utilizando modelos do tipo ARIMA

Criando um Modelo AutoArima no Python

Para criar uma previsão do IPCA usando o Python, devemos proceder através do processo de Análise de Dados, seguindo os seguintes passos:

  • Coleta do IPCA: utilizaremos a biblioteca python-bcb para retirar os dados do IPCA mensal direto do SGS, por meio do código 433;
  • Tratamento e Data Wrangling: Para fins de criação e utilização da biblioteca statsforecast devemos formatar os dados em uma forma ideal, bem como realizar a separação de dados de treino e teste;
  • Análise exploratória: Averiguar por meio de estatísticas descritivas e gráficos o comportamento do IPCA;
  • Modelagem e Previsão: criação do modelo e previsão.

Começamos com o processo de coleta dos dados e tratamento dos dados do IPCA, como demonstrado no código abaixo:


# Coleta do IPCA
ipca_raw = sgs.get(('y', 433), start = '2004-01-01')
# Tratamento do IPCA
ipca = (
    ipca_raw
    .reset_index()
    .assign(unique_id = 'ipca')
    .rename(columns = {'Date' : 'ds' })
)

O objetivo portanto, a partir da coleta e tratamento dos dados, será o de separar a amostra da série do IPCA mensal em teste e treino, utilizar a biblioteca statsforecast para rodar um AutoArima nos dados de testes.

Para entender todo o processo listado acima, com os códigos e video-aula, faça parte do Clube AM, o repositório de código da Análise Macro, contendo exercícios semanais de R e Python.

Vemos o resultado da previsão do AutoArima comparado com os dados de teste:

________________________________________________

Quer se aprofundar no assunto?

Alunos da trilha de Ciência de dados para Economia e Finanças podem aprender a como construir projetos que envolvem dados reais usando modelos econométricos e de Machine Learning com o R.

Referências
Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.