Como incorporar mudanças climáticas na previsão da inflação?

Desde a metade do primeiro semestre de 2023 a temperatura das águas do Oceano Pacífico equatorial se elevaram, atingindo um ponto de anomalia em agosto (NOOA). Este fenômeno é conhecido como “El Niño” e tem impactos generalizados em diversas áreas do globo, podendo afetar a precipitação e temperatura, que são fatores chave para o plantio e colheita de diversas culturas.

Para mensurar os efeitos do El Niño sobre os preços da alimentação dos brasileiros, neste artigo estimamos um modelo de vetores autoregressivos de ordem p ou, simplesmente, VAR(p), baseado em BCB (2019):

Para mensurar os efeitos do El Niño sobre os preços da alimentação dos brasileiros, neste artigo estimamos um modelo de vetores autoregressivos de ordem p ou, simplesmente, VAR(p), baseado em BCB (2019):

    \[y_t = \sum_{i=1}^p A_p y_{t-p} + z_t + \varepsilon_t\]

onde:

- y_t = (\pi^{AD}, h_t, \pi_t^*, ONI_t^*)

- \pi^{AD} é a taxa de inflação medida pelo IPCA, subgrupo alimentação no domicílio

- h_t é o hiato do produto medido pela função de produção

- \pi_t^* é a inflação externa, medida pelo Índice de Commodities - Brasil agropecuário

- ONI_t^* é o Oceanic Niño Index (ONI), transformado como (ONI_t + 0,5)^2

- z_t inclui uma constante e dummies sazonais

Utilizamos uma amostra de dados do quarto trimestre de 2003 ao terceiro trimestre de 2023. Outras informações e detalhes podem ser encontradas em BCB (2019). Os dados em frequência trimestral são expostos no gráfico abaixo:

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

Abaixo exibimos os resultados estatísticos do modelo VAR:

Series: oni_star, pi_star, hiato, pi_ad 
Model: VAR(3) w/ mean 

Coefficients for oni_star:
      lag(oni_star,1)  lag(pi_star,1)  lag(hiato,1)  lag(pi_ad,1)
               1.3077          0.0189       -0.1454       -0.0633
s.e.           0.1280          0.0141        0.2437        0.0522
      lag(oni_star,2)  lag(pi_star,2)  lag(hiato,2)  lag(pi_ad,2)
              -0.8657          0.0056       -0.0028        0.0216
s.e.           0.1845          0.0151        0.4201        0.0521
      lag(oni_star,3)  lag(pi_star,3)  lag(hiato,3)  lag(pi_ad,3)  constant
               0.2629          0.0008        0.1916       -0.0211   -0.1488
s.e.           0.1343          0.0148        0.2420        0.0497    0.2575
      season().year2  season().year3  season().year4
              0.3957          0.9270          0.6599
s.e.          0.3224          0.3201          0.3136

Coefficients for pi_star:
      lag(oni_star,1)  lag(pi_star,1)  lag(hiato,1)  lag(pi_ad,1)
               0.3929         -0.1429       -1.8525        0.7254
s.e.           1.1553          0.1269        2.1994        0.4710
      lag(oni_star,2)  lag(pi_star,2)  lag(hiato,2)  lag(pi_ad,2)
              -2.2887          0.1106        4.1782       -0.2966
s.e.           1.6649          0.1362        3.7911        0.4699
      lag(oni_star,3)  lag(pi_star,3)  lag(hiato,3)  lag(pi_ad,3)  constant
               1.1749          0.1617       -2.8212       -0.1620    0.5076
s.e.           1.2122          0.1340        2.1837        0.4481    2.3239
      season().year2  season().year3  season().year4
             -2.7310          1.7834          4.7214
s.e.          2.9092          2.8882          2.8295

Coefficients for hiato:
      lag(oni_star,1)  lag(pi_star,1)  lag(hiato,1)  lag(pi_ad,1)
              -0.1230          0.0065        1.7018        0.0027
s.e.           0.0627          0.0069        0.1193        0.0255
      lag(oni_star,2)  lag(pi_star,2)  lag(hiato,2)  lag(pi_ad,2)
               0.1914         -0.0104       -1.0377       -0.0286
s.e.           0.0903          0.0074        0.2056        0.0255
      lag(oni_star,3)  lag(pi_star,3)  lag(hiato,3)  lag(pi_ad,3)  constant
              -0.1709         -0.0038        0.2652        0.0531   -0.0397
s.e.           0.0658          0.0073        0.1184        0.0243    0.1261
      season().year2  season().year3  season().year4
             -0.0053          0.1549          0.0457
s.e.          0.1578          0.1567          0.1535

Coefficients for pi_ad:
      lag(oni_star,1)  lag(pi_star,1)  lag(hiato,1)  lag(pi_ad,1)
               0.0428          0.1015        0.6524        0.0423
s.e.           0.3108          0.0341        0.5917        0.1267
      lag(oni_star,2)  lag(pi_star,2)  lag(hiato,2)  lag(pi_ad,2)
               0.3378          0.0510       -1.3854       -0.0541
s.e.           0.4479          0.0367        1.0199        0.1264
      lag(oni_star,3)  lag(pi_star,3)  lag(hiato,3)  lag(pi_ad,3)  constant
              -0.1455          0.0303        0.8795        0.3049    1.1845
s.e.           0.3261          0.0360        0.5875        0.1206    0.6252
      season().year2  season().year3  season().year4
             -0.5070         -1.7955          0.3972
s.e.          0.7827          0.7770          0.7612

Residual covariance matrix:
         oni_star pi_star   hiato   pi_ad
oni_star   0.6806  1.1047 -0.0131 -0.0714
pi_star    1.1047 55.4166  0.0012  3.8450
hiato     -0.0131  0.0012  0.1630  0.0947
pi_ad     -0.0714  3.8450  0.0947  4.0110

log likelihood = -519.71
AIC = 1199.42   AICc = -2040.58 BIC = 1386.92  O gráfico abaixo sintetiza as contribuições dos fatores para a variável de interesse, a inflação de alimentos, sob a ótica da decomposição histórica dos choques estruturais do modelo VAR. No período de 2015-2016, o fenômeno El Niño contribuiu consideravelmente para o aumento da inflação. No período da pandemia, de 2019 até 2021, a variável climática contribuiu para o aumento da inflação de forma menos expressiva. E mais recentemente, no terceiro trimestre de 2023, a variável climática começou a contribuir para o aumento da inflação novamente, porém em magnitude inferior em relação a períodos anteriores. 

Uma vez identificado a importância da variável climática para a inflação de alimentos, incorporamos a mesma na previsão 12 períodos a frente. O gráfico abaixo apresenta as previsões para o período e variáveis do modelo:

Este artigo contribui marginalmente para a avaliação dos efeitos de impactos climáticos no desvio da trajetória de equilíbro da inflação de alimentos no Brasil no período atual.

Conclusão

Será que o El Niño impacta o preço do feijão com arroz no prato dos brasileiros? Para responder esta pergunta estimamos um modelo VAR(p) utilizando dados do Oceanic Niño Index (ONI), investigamos a decomposição histórica dos choques estruturais e incorporamos o indicador de impacto climático nas previsões da inflação.

Referências

BANCO CENTRAL DO BRASIL (2019). Impactos do clima na inflação de alimentos. Estudo Especial nº 57/2019.

Tenha acesso ao código e suporte desse e de mais 500 exercícios no Clube AM!

Quer o código desse e de mais de 500 exercícios de análise de dados com ideias validadas por nossos especialistas em problemas reais de análise de dados do seu dia a dia? Além de acesso a vídeos, materiais extras e todo o suporte necessário para você reproduzir esses exercícios? Então, fale com a gente no Whatsapp e veja como fazer parte do Clube AM, clicando aqui.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.