Método dos Momentos Generalizados

De modo a complementar o conhecimento sobre modelos utilizados no âmbito da modelagem macroeconômica, vamos mostrar agora um método que pode ser considerado uma generalização de diversos outros métodos de estimação, tais como mínimos quadrados, variáveis instrumentais e máxima verossimilhança. Vamos realizar uma introdução ao Método dos Momentos Generalizado (GMM) e demonstrar o seu uso através de um exemplo no Python.

Enquanto, como vimos, as propriedades do estimador de mínimos quadrados depende da exogeneidade dos regressores, o Método dos Momentos Generalizado (GMM) é muito mais flexível dado que ele requer apenas algumas premissas relacionadas a condições de momento. Em macroeconomia, por exemplo, isso permite estimar um modelo estrutural equação por equação.

O GMM é uma abordagem flexível que permite estimar parâmetros desconhecidos usando informações sobre os momentos das variáveis aleatórias observadas.

A ideia principal do GMM é encontrar os valores dos parâmetros que tornam os momentos teóricos calculados a partir do modelo estatístico mais próximos possível dos momentos empíricos observados nos dados. Isso é feito minimizando uma função de distância entre os momentos empíricos e teóricos.

_____________________________________
Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada  e aprenda a criar projetos voltados para a Macroeconomia.

_______________________________________________

Referências

Bueno, R. L. S. 2011. Econometria de Séries Temporais. Editora Cengage Learning.
Cameron, Adrian Colin. 2010. Microeconometrics using Stata. Stata Press.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar um Agente de IA visualizador de dados

A criação de agentes de Inteligência Artificial (IA) capazes de transformar dados brutos em visualizações claras e informativas está se tornando cada vez mais acessível. Esses agentes podem automatizar tarefas complexas, desde a coleta de dados de diversas fontes até a geração de gráficos e tabelas, permitindo que os usuários foquem na análise e na tomada de decisões. Este post explora o processo de construção de um agente de IA para visualização de dados, destacando as ferramentas e os conceitos fundamentais envolvidos.

Criando um Simples Assistente de Pesquisa com LangGraph

O exercício utiliza o LangGraph para criar personas fictícias de analistas econômicos, entrevistá-las com um especialista fictício e, a partir dessas interações, gerar relatórios técnicos usando LLMs, buscas na web e execução paralela.

Construindo Corrective RAG (CRAG) com LangGraph

Este post explica o conceito de Agentic CRAG (Corrective Retrieval-Augmented Generation) e sua aplicação na análise das atas do COPOM. Mostramos como combinar recuperação de informações, avaliação de relevância, correção de consultas e busca externa em um fluxo estruturado com LangGraph.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.