Método dos Momentos Generalizados

De modo a complementar o conhecimento sobre modelos utilizados no âmbito da modelagem macroeconômica, vamos mostrar agora um método que pode ser considerado uma generalização de diversos outros métodos de estimação, tais como mínimos quadrados, variáveis instrumentais e máxima verossimilhança. Vamos realizar uma introdução ao Método dos Momentos Generalizado (GMM) e demonstrar o seu uso através de um exemplo no Python.

Enquanto, como vimos, as propriedades do estimador de mínimos quadrados depende da exogeneidade dos regressores, o Método dos Momentos Generalizado (GMM) é muito mais flexível dado que ele requer apenas algumas premissas relacionadas a condições de momento. Em macroeconomia, por exemplo, isso permite estimar um modelo estrutural equação por equação.

O GMM é uma abordagem flexível que permite estimar parâmetros desconhecidos usando informações sobre os momentos das variáveis aleatórias observadas.

A ideia principal do GMM é encontrar os valores dos parâmetros que tornam os momentos teóricos calculados a partir do modelo estatístico mais próximos possível dos momentos empíricos observados nos dados. Isso é feito minimizando uma função de distância entre os momentos empíricos e teóricos.

_____________________________________
Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada  e aprenda a criar projetos voltados para a Macroeconomia.

_______________________________________________

Referências

Bueno, R. L. S. 2011. Econometria de Séries Temporais. Editora Cengage Learning.
Cameron, Adrian Colin. 2010. Microeconometrics using Stata. Stata Press.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.