A recuperação em V do PIB brasileiro

No próximo dia 15/12, darei uma aula ao vivo sobre como automatizar um departamento de pesquisa macroeconômica com o R. A aula faz parte do lançamento do Clube AM,  um grupo fechado e exclusivo de pessoas que buscam estar atualizadas com o que há de mais moderno no mundo da Análise de dados com R, com reuniões mensais e acesso a materiais e descontos exclusivos. Para se inscrever na aula, clique aqui. Para ilustrar o que faremos nessa aula, no Comentário de Conjuntura dessa semana vou mostrar como é possível automatizar a coleta e tratamento dos dados do Produto Interno Bruto (PIB) brasileiro.

Em termos simples, o PIB é a soma de bens e serviços finais produzidos por um determinado país em um período de tempo. Em geral, um trimestre. No Brasil, cabe ao Instituto Brasileiro de Geografia e Estatística (IBGE) a coleta e divulgação dos dados do PIB.

Para ilustrar como é possível coletar os dados do PIB com o R, vamos usar aqui o pacote sidrar, que coleta dados diretamente do SIDRA/IBGE. O código a seguir carrega alguns pacotes que usaremos.


library(tidyverse)
library(sidrar)
library(zoo)
library(tstools)
library(scales)

Na sequência, nós coletamos os dois números-índices do PIB e criamos três métricas de crescimento: a variação marginal, a variação interanual e a variação acumulada em 4 trimestres. Com isso, poderemos ter uma dimensão da recuperação pós-pandemia.


## Coletar Números Indices do PIB
### Número Indice com ajuste sazonal

pib_sa = get_sidra(api='/t/1621/n1/all/v/all/p/all/c11255/90707/d/v584%202') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
rename(pib_sa = Valor) %>%
mutate(var_marginal = (pib_sa/lag(pib_sa,1)-1)*100) %>%
select(date, pib_sa, var_marginal) %>%
as_tibble()

### Número Índice sem ajuste
pib = get_sidra(api='/t/1620/n1/all/v/all/p/all/c11255/90707/d/v583%202') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
rename(pib = Valor) %>%
mutate(var_interanual = (pib/lag(pib,4)-1)*100) %>%
mutate(var_anual = acum_i(pib, 4)) %>%
select(date, pib, var_interanual, var_anual) %>%
as_tibble()

### Juntar os dados
df_pib = inner_join(pib_sa, pib, by='date') %>%
drop_na()

Um gráfico do número-índice do PIB e das principais métricas de crescimento que criamos é colocado abaixo.

Pelos gráficos, observa-se um início de recuperação em V da economia brasileira no pós-pandemia. Para a continuidade da recuperação, contudo, ainda restam diversas incertezas no horizonte, como a solvência fiscal e o fim do auxílio emergencial.

____________________

(*) Conheça o Clube AM aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o efeito de um choque de juros sobre a inadimplência?

Este estudo investiga a dinâmica entre a política monetária e o risco de crédito no Brasil. Utilizando um modelo VAR em R, estimamos que choques na taxa de juros elevam a inadimplência das famílias com uma defasagem significativa, atingindo o pico de impacto cerca de 20 meses após o aperto monetário, a despeito da melhora no mercado de trabalho.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.