Análise do PIB com o R

A quarta versão do nosso Curso de Análise de Conjuntura usando o R abre inscrições no próximo dia 23/06. A ideia dessa versão é apresentar aos alunos uma forma mais simples e direta de automatizar a coleta, tratamento e visualização de dados macroeconômicos. Além disso, foi incluída uma seção sobre construção de cenários macroeconômicos.  Nesse Comentário de Conjuntura, apresentamos os dados do PIB do primeiro trimestre de 2020 como exemplo dessa nova metodologia.

Os números índices sem ajuste sazonal do PIB e dos seus componentes de demanda e oferta são coletados a partir do código abaixo.


library(tidyverse)
library(lubridate)
library(tstools)
library(sidrar)
library(zoo)
library(scales)
library(gridExtra)
library(timetk)

## Dados sem ajuste sazonal
tabela = get_sidra(api='/t/1620/n1/all/v/all/p/all/c11255/90687,90691,90696,90707,93404,93405,93406,93407,93408/d/v583%202') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
select(date, `Setores e subsetores`, Valor) %>%
spread(`Setores e subsetores`, Valor) %>%
rename(`Consumo do Governo` = `Despesa de consumo da administração pública`) %>%
as_tibble()

Também são importados diretamente do SIDRA os números índices com ajuste sazonal, com código similar ao código acima. A partir desses números índices, nós calculamos três métricas de crescimento: o crescimento marginal, o crescimento interanual e o crescimento acumulado em quatro trimestres. A seguir, apresentamos os gráficos referentes a essa última métrica.

A seguir, colocamos a variação na margem do PIB e dos seus componentes.

E por fim, também colocamos a variação interanual.

Também é possível criar gráficos referentes à mesma série. Para ilustrar, coloco a seguir os dados referentes ao PIB.

No geral, a despeito da queda na margem do PIB e dos seus componentes, a avaliação é que o efeito maior da pandemia será sentido no 2º trimestre, quando houve um aumento das medidas de isolamento.

____________________

(*) Você aprende a coletar, tratar e visualizar dados macroeconômicos no nosso Curso de Análise de Conjuntura usando o R.


____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como medir a comunicação do Banco Central?

Descubra como o índice ALT transforma a linguagem do Banco Central em dados analisáveis, permitindo investigar como o tom das atas do COPOM varia conforme o cenário macroeconômico e as decisões de política monetária.

Análise de Séries Temporais com a Linguagem R: dados ISP-RJ

Neste tutorial, vamos conduzir uma análise diagnóstica completa. Começaremos visualizando a série e sua tendência, depois a decomporemos em seus componentes fundamentais. Em seguida, investigaremos a distribuição estatística dos dados e, por fim, aplicaremos técnicas mais avançadas, como a análise de autocorrelação e testes de estacionariedade, que são pré-requisitos cruciais para a construção de modelos de previsão robustos como o ARIMA.

Análise de dados com a Linguagem R: Segurança no Rio de Janeiro

Neste post, criamos um tutorial prático que guia você através do ciclo completo de análise de dados, desde a coleta e tratamento até a visualização e comunicação de resultados. Utilizando a linguagem R, o ecossistema tidyverse e a ferramenta de publicação Quarto, analisamos a base de dados de criminalidade do Instituto de Segurança Pública (ISP) do Rio de Janeiro.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.