"Aquele 1%": economia se acomoda em 2018

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

No nosso Curso de Análise de Conjuntura usando o R estão disponíveis apresentações feitas em Beamer/LaTeX de diversos indicadores da economia brasileira. Essas apresentações tem por princípio a automatização do processo de coleta e tratamento dos dados, de maneira que a atualização dos resultados pode ser feita em poucos minutos, com mudanças mínimas no script. Isso garante um aumento considerável na produtividade de quem mexe todos os dias com dados macroeconômicos.

Nas últimas semanas, por suposto, tenho trabalhado na transição dessas apresentações para RMarkdown, uma sintaxe mais simples que o LaTeX, que permite uma introdução ainda mais tranquila para quem nunca programou. Como exemplo, coloco nesse post a atualização da apresentação das Contas Nacionais, divulgadas hoje pelo IBGE para o resultado do quarto trimestre do ano passado.

Os alunos do Curso de Análise de Conjuntura usando o R têm acesso a todos os códigos que geram a apresentação, desde a coleta dos dados, o tratamento dos mesmos e a visualização via ggplot2. Como degustação, não alunos podem ver a nova apresentação RMarkdown aqui.

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados do Google Trends no R e no Python

Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.

Contribuição para a Volatilidade [Python]

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.