"Aquele 1%": economia se acomoda em 2018

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

No nosso Curso de Análise de Conjuntura usando o R estão disponíveis apresentações feitas em Beamer/LaTeX de diversos indicadores da economia brasileira. Essas apresentações tem por princípio a automatização do processo de coleta e tratamento dos dados, de maneira que a atualização dos resultados pode ser feita em poucos minutos, com mudanças mínimas no script. Isso garante um aumento considerável na produtividade de quem mexe todos os dias com dados macroeconômicos.

Nas últimas semanas, por suposto, tenho trabalhado na transição dessas apresentações para RMarkdown, uma sintaxe mais simples que o LaTeX, que permite uma introdução ainda mais tranquila para quem nunca programou. Como exemplo, coloco nesse post a atualização da apresentação das Contas Nacionais, divulgadas hoje pelo IBGE para o resultado do quarto trimestre do ano passado.

Os alunos do Curso de Análise de Conjuntura usando o R têm acesso a todos os códigos que geram a apresentação, desde a coleta dos dados, o tratamento dos mesmos e a visualização via ggplot2. Como degustação, não alunos podem ver a nova apresentação RMarkdown aqui.

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como analisar o sentimento dos textos do COPOM no Python?

Neste exercício construímos um indicador que busca quantificar o sentimento proveniente das decisões de política monetária no Brasil. Usando técnicas de mineração de texto, implementamos todas as etapas necessárias, desde web scraping e pré-processamento das atas do Comitê de Política Monetária do Banco Central (COPOM), até a criação de tokens e a classificação do sentimento implícito nos textos.

Como importar os textos do COPOM para análise de sentimentos no Python?

Os textos divulgados pelo COPOM, sejam os comunicados ou atas, são o ponto de partida para diversos tipos de análises quantitativas, como a análise de sentimentos, e qualitativas, como uma análise de cenário econômico. Neste artigo, mostramos como coletar estes textos de forma automatizada usando web scrapping e Python.

Como tratar dados no Python? Parte 5: renomeando colunas

Como dar novos nomes significativos para as colunas em uma tabela de dados usando Python? Neste tutorial mostramos os métodos de renomeação de colunas disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.