CAGED antecipa retomada mais forte do nível de atividade

Na Edição 58 do Clube do Código, realizei uma série de testes estatísticos envolvendo o saldo dessazonalizado entre admitidos e demitidos do CAGED e o crescimento acumulado em 12 meses do PIB. Os resultados encontrados sugerem, de forma bastante forte, que existe causalidade no sentido do saldo do CAGED para o crescimento do PIB. Para a decomposição de variância, passados 12 períodos, o saldo do CAGED explica mais de 95% da variância no crescimento do PIB.

Com base nisso e nos resultados do CAGED no 3º tri, podemos dizer que tivemos um PIB acima do esperado na margem. É possível que o PIB tenha crescido até 0,5% frente ao segundo trimestre. Os dados do CAGED, por suposto, também costumam antecipar os resultados da PNAD Contínua. Isso significa que devemos ver uma redução na taxa de desemprego mais forte nos próximos meses, respeitada a sazonalidade da série, obviamente.

_______________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Frameworks para criar AI Agents

Neste post, vamos dar o primeiro passo rumo à construção de Agentes de IA mais sofisticados, capazes de tomar decisões, interagir com ferramentas externas e lidar com tarefas complexas. Para isso, precisamos entender o papel dos frameworks agenticos (ou agentic frameworks) e como eles podem facilitar esse processo. Aqui introduzimos dois frameworks populares de desenvolvimento de Agentes de IA.

Construindo RAG para Análise do COPOM com SmolAgents

Este exercício demonstra, passo a passo, como aplicar o conceito de Retrieval-Augmented Generation (RAG) com agentes inteligentes na análise de documentos econômicos. Utilizando a biblioteca SmolAgents, desenvolvemos um agente capaz de interpretar e responder a perguntas sobre as atas do COPOM com base em buscas semânticas.

Como criar um Agente de IA?

Unindo conhecimentos sobre Tools, LLMs e Vector Stores, agora é hora de integrar diferentes conceitos e aprender a construir um Agente de IA completo. Neste post, nosso objetivo será criar um Agente capaz de responder perguntas sobre o cenário macroeconômico brasileiro, utilizando dados de expectativas de mercado do Boletim Focus do Banco Central do Brasil (BCB) e o framework LangChain no Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.