Como anda o juro neutro no Brasil?

No mês de dezembro, iremos lançar uma nova versão do Clube do Código. O projeto de compartilhamento de códigos da Análise Macro vai avançar para uma versão 2.0, que incluirá a existência de uma comunidade no Telegram/Whatsapp, de modo a reunir os membros do Novo Clube, compartilhando com eles todos os códigos dos nossos posts feitos aqui no Blog, exercícios de análise de dados de maior fôlego, bem como tirar dúvidas sobre todos os nossos projetos e Cursos Aplicados de R.

Para ilustrar o que vamos compartilhar lá nesse novo ambiente, vou publicar aqui nos próximos dias alguns dos nossos exercícios completos de análise de dados. Esses exercícios fazem parte do repositório atual do Clube, que irá migrar para o novo projeto. Além de todos os exercícios existentes, vamos adicionar novos exercícios e códigos toda semana, mantendo os membros atualizados sobre o que há de mais avançado em análise de dados, econometria, machine learning, forecasting e R.

Para ilustrar o que vamos fazer lá no Clube AM, nesse Comentário de Conjuntura vou atualizar um exercício que fizemos para construir uma proxy para o juro neutro da economia brasileira. O exercício foi baseado no Relatório Trimestral de Inflação de dezembro de 2019, onde o pessoal do Banco Central apresentou uma proxy para a taxa neutra de juros considerando as taxas de inflação e de juros três anos à frente disponibilizadas na pesquisa Focus.

A despeito da simplicidade do exercício, existe um trabalho de coleta e tratamento dos dados da pesquisa Focus para se chegar ao juro real três anos à frente, considerado como proxy para o juro neutro da economia. Isso dito, para mostrar como as coisas ficam mais fáceis com o R, eu resolvi replicar o exercício do Banco Central nesse Comentário de Conjuntura.

O script começa carregando alguns pacotes:


library(lubridate)
library(magrittr)
library(dplyr)
library(ggplot2)
library(scales)
library(ggrepel)
library(rbcb)
library(xts)
library(png)
library(grid)
library(gridExtra)

Na sequência, nós coletamos a inflação esperada.


ipcae = get_annual_market_expectations('IPCA',
start_date = '2010-03-01')

ipca_esperado = ipcae$median[ipcae$reference_year==year(ipcae$date)+3
&ipcae$base==0]

ipca_esp_min = ipcae$min[ipcae$reference_year==year(ipcae$date)+3
&ipcae$base==0]

ipca_esp_max = ipcae$max[ipcae$reference_year==year(ipcae$date)+3
&ipcae$base==0]

dates = ipcae$date[ipcae$reference_year==year(ipcae$date)+3
&ipcae$base==0]

data = data.frame(dates=dates, min=ipca_esp_min,
ipca=ipca_esperado,
max=ipca_esp_max)

Também coletamos a taxa Selic esperada.


selice = get_annual_market_expectations('Meta para taxa over-selic',
start_date = '2010-03-01')

selic_esperado = selice$median[selice$indic_detail=='Fim do ano'&selice$reference_year==year(selice$date)+3]

selic_esp_min = selice$min[selice$indic_detail=='Fim do ano'&selice$reference_year==year(selice$date)+3]

selic_esp_max = selice$max[selice$indic_detail=='Fim do ano'&selice$reference_year==year(selice$date)+3]

dates = selice$date[selice$indic_detail=='Fim do ano'&selice$reference_year==year(selice$date)+3]

data2 = data.frame(dates=dates, min=selic_esp_min,
selic=selic_esperado,
max=selic_esp_max)

Com as duas séries disponíveis, nós podemos construir nossa proxy para o juro neutro.


ipca_min = xts(ipca_esp_min, order.by = dates)
ipca_tmais3 = xts(ipca_esperado, order.by = dates)
ipca_max = xts(ipca_esp_max, order.by = dates)

selic_min = xts(selic_esp_min, order.by = dates)
selic_tmais3 = xts(selic_esperado, order.by = dates)
selic_max = xts(selic_esp_max, order.by = dates)

neutro_min = (((1+(selic_min/100))/(1+(ipca_min/100)))-1)*100
neutro = (((1+(selic_tmais3/100))/(1+(ipca_tmais3/100)))-1)*100
neutro_max = (((1+(selic_max/100))/(1+(ipca_max/100)))-1)*100

df = data.frame(dates=as.Date(time(neutro)), neutro=neutro,
min=neutro_min, max=neutro_max)

Por fim, visualizamos a nossa série.

 

__________________

(*) Cadastre-se aqui na nossa Lista VIP para receber um super desconto na abertura das Turmas 2021.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.