Consumo em Restaurantes e Supermercados

A Fipe (Fundação Instituto de Pesquisas Econômicas), em parceria com a Alelo, criou dois índices de consumo em restaurantes e supermercados que são bastante interessantes para verificar o impacto da pandemia nos hábitos de consumo dos brasileiros. Nesse Comentário de Conjuntura, fazemos uma análise dos índices. O código completo está disponível para os membros do Clube AM.


library(readxl)
library(tidyverse)
library(zoo)

Com o código acima, nós carregamos os pacotes utilizados nesse exercício. A seguir, nós baixamos a planilha excel disponível no site da FIPE.


url = 'https://downloads.fipe.org.br/indices/indicesconsumoalelo-serieshistoricas.xlsx'
download.file(url, destfile = 'seriehistorica.xlsx', mode='wb')
data = read_excel('seriehistorica.xlsx', sheet=1, skip=1) %>%
select(dia, "Índice de Consumo em Supermercados (ICS) - Valor",
"Índice de Consumo em Restaurantes (ICR) - Valor") %>%
rename('Consumo em Supermercados (diário)' = "Índice de Consumo em Supermercados (ICS) - Valor",
'Consumo em Restaurantes (diário)' = "Índice de Consumo em Restaurantes (ICR) - Valor") %>%
mutate(`Consumo em Supermercados (mensal)` = rollapply(`Consumo em Supermercados (diário)`, 30,
mean, align='right',
fill=NA)) %>%
mutate(`Consumo em Restaurantes (mensal)` = rollapply(`Consumo em Restaurantes (diário)`, 30,
mean, align='right',
fill=NA)) %>%
drop_na() %>%
gather(variavel, valor, -dia)

A seguir, nós podemos gerar o gráfico múltiplo abaixo.

A análise dos gráficos sugere que o consumo em supermercados aumentou no início da pandemia, enquanto houve uma queda brusca no consumo em restaurantes. Enquanto aquele parece ter voltado ao seu nível normal, este ainda não completou a volta ao nível anterior à pandemia.

A esse respeito, é interessante verificar se haverá uma mudança permanente nos hábitos de consumo, isto é, mais pessoas cozinhando em casa, por exemplo, o que reduz o consumo potencial em restaurantes.

_______________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.