Consumo em Restaurantes e Supermercados

A Fipe (Fundação Instituto de Pesquisas Econômicas), em parceria com a Alelo, criou dois índices de consumo em restaurantes e supermercados que são bastante interessantes para verificar o impacto da pandemia nos hábitos de consumo dos brasileiros. Nesse Comentário de Conjuntura, fazemos uma análise dos índices. O código completo está disponível para os membros do Clube AM.


library(readxl)
library(tidyverse)
library(zoo)

Com o código acima, nós carregamos os pacotes utilizados nesse exercício. A seguir, nós baixamos a planilha excel disponível no site da FIPE.


url = 'https://downloads.fipe.org.br/indices/indicesconsumoalelo-serieshistoricas.xlsx'
download.file(url, destfile = 'seriehistorica.xlsx', mode='wb')
data = read_excel('seriehistorica.xlsx', sheet=1, skip=1) %>%
select(dia, "Índice de Consumo em Supermercados (ICS) - Valor",
"Índice de Consumo em Restaurantes (ICR) - Valor") %>%
rename('Consumo em Supermercados (diário)' = "Índice de Consumo em Supermercados (ICS) - Valor",
'Consumo em Restaurantes (diário)' = "Índice de Consumo em Restaurantes (ICR) - Valor") %>%
mutate(`Consumo em Supermercados (mensal)` = rollapply(`Consumo em Supermercados (diário)`, 30,
mean, align='right',
fill=NA)) %>%
mutate(`Consumo em Restaurantes (mensal)` = rollapply(`Consumo em Restaurantes (diário)`, 30,
mean, align='right',
fill=NA)) %>%
drop_na() %>%
gather(variavel, valor, -dia)

A seguir, nós podemos gerar o gráfico múltiplo abaixo.

A análise dos gráficos sugere que o consumo em supermercados aumentou no início da pandemia, enquanto houve uma queda brusca no consumo em restaurantes. Enquanto aquele parece ter voltado ao seu nível normal, este ainda não completou a volta ao nível anterior à pandemia.

A esse respeito, é interessante verificar se haverá uma mudança permanente nos hábitos de consumo, isto é, mais pessoas cozinhando em casa, por exemplo, o que reduz o consumo potencial em restaurantes.

_______________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como automatizar tarefas repetitivas usando Python? Um exemplo para largar o Excel

Manter relatórios diários com dados e análises atualizados é um desafio, pois envolve várias etapas: coleta de dados, tratamento de informações, produção de análises e atualização de relatório. Para superar este desafio algumas ferramentas como Python + Quarto + GitHub podem ser usadas para automatizar tudo que for automatizável. Neste artigo mostramos um exemplo com dados do mercado financeiro.

Criando um Dashboard de análise de Ações no Python

Um Dashboard é um painel de controle que consolida uma variedade de informações sobre um determinado objeto de estudo em um ou mais painéis. Ele simplifica significativamente o processo de análise de dados, oferecendo uma visão global e fácil de entender. Uma maneira simples de construir um Dashboard para acompanhar uma ação específica é utilizando duas ferramentas: Quarto e Python. Neste post, mostramos o resultado da criação de um Dashboard de Ação.

Analisando séries temporais no Python e esquecendo de vez o Excel

Séries temporais representam uma disciplina extremamente importante em diversas áreas, principalmente na economia e na ciência de dados. Mas, afinal, como lidar com esses dados que se apresentam ao longo do tempo? Neste exercício, demonstraremos como compreender uma série temporal e como o Python se destaca como uma das melhores ferramentas para analisar esse tipo de dado.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.