Desemprego segue subestimado no Brasil

No nosso Curso de Análise de Conjuntura usando o R, ensino os alunos a analisar os dados da Pesquisa Nacional por Amostra de Domicílios Contínua (PNAD Contínua), que traz diversos dados sobre o mercado de trabalho brasileiro. A análise desses dados dá uma dimensão interessante sobre os efeitos da pandemia do Covid-19. Para ilustrar, vamos olhar alguns dados agregados nesse Comentário de Conjuntura.

O script, como de hábito, começa com alguns pacotes...


## Pacotes utilizados nessa apresentação
library(tidyverse)
library(lubridate)
library(sidrar)
library(zoo)
library(scales)
library(timetk)
library(knitr)

Uma vez que os pacotes estejam carregados, eu posso pegar alguns dados agregados da PNAD, como no código abaixo.


populacao = get_sidra(api='/t/6022/n1/all/v/606/p/all') %>%
mutate(date = parse_date(`Trimestre Móvel (Código)`,
format='%Y%m')) %>%
select(date, Valor) %>%
as_tibble()

names = c("date", 'pnea', 'pea', 'desocupada', 'ocupada', 'pia')
condicao = get_sidra(api='/t/6318/n1/all/v/1641/p/all/c629/all') %>%
mutate(date = parse_date(`Trimestre Móvel (Código)`,
format='%Y%m')) %>%
select(date, "Condição em relação à força de trabalho e condição de ocupação", Valor) %>%
spread("Condição em relação à força de trabalho e condição de ocupação", Valor) %>%
`colnames<-`(names) %>%
as_tibble()

Com o código acima, eu pego dados de duas tabelas, a 6022 e 6318. Assim, consigo criar as variáveis que eu mais quero, que são a taxa de desemprego e a taxa de participação com o código a seguir.


agregado_pnad = inner_join(populacao, condicao, by='date') %>%
rename(populacao = Valor) %>%
mutate(inativos = populacao - pia,
desemprego = desocupada/pea*100,
participacao = pea/pia*100) %>%
select(date, populacao, inativos, pia, pea, pnea, ocupada, desocupada,
desemprego, participacao)

Uma vez que os dados estejam disponíveis, posso visualizá-los como abaixo.

Observe que o desemprego se aproxima dos 14% da PEA (População Economicamente Ativa). Porém, isso se dá com uma taxa de participação (PEA sobre a PIA) bastante reduzida por conta da pandemia do Covid-19. Em palavras outras, com o fim do auxílio emergencial e também com a proximidade da vacina e/ou da imunidade de rebanho na maioria das capitais, espera-se que o desemprego dê um salto ainda maior nos próximos meses.

________________

(*) Para ter acesso aos códigos completos de nossos futuros exercícios, cadastre-se na nossa Lista VIP aqui.

(**) As inscrições para as Turmas de Verão começam no próximo dia 27/10. Para ser avisado por e-mail, cadastre-se aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.