Gerando Previsões Combinadas para a Inflação a partir dos grupos do IPCA

A inflação cheia medida pelo IPCA em um período t qualquer nada mais é do que a soma da contribuição da inflação em cada um dos seus nove grupos, de acordo com os pesos dos mesmos no índice. Em outros termos,

(1)   \begin{align*} \pi_t = \sum_{i=1}^{9} \pi_{t,i}^{g} p_{t,i}^{g} \end{align*}

onde \pi_t é a inflação cheia, \pi_{t,i}^{g} é a inflação em t no grupo i e p_{t,i}^{g} é o peso em t do grupo i no índice cheio. De modo a ilustrar, podemos baixar com o pacote sidrar, as variações e os pesos desses nove grupos do IPCA, conforme o código abaixo.


## Pacotes
library(sidrar)
library(ggplot2)
library(forecast)
library(timetk)
library(zoo)
library(scales)
library(tidyverse)

## Baixar e tratar os dados
tab1 = get_sidra(api='/t/2938/n1/all/v/63,66/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v63%202,v66%204')
tab2 = get_sidra(api='/t/1419/n1/all/v/63,66/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v63%202,v66%204')
tab3 = get_sidra(api='/t/7060/n1/all/v/63,66/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v63%202,v66%204')

series = c(7170, 7445, 7486, 7558, 7625, 7660,
7712, 7766, 7786)

names = c('Alimentos', 'Habitação', 'Art de Resid',
'Vestuário', 'Transporte', 'Saúde e cuid pessoais',
'Despesas Pessoas', 'Educação', 'Comunicação')

var1 <- matrix(NA, ncol=length(series),
nrow=nrow(tab1)/length(series)/2)

peso1 <- matrix(NA, ncol=length(series),
nrow=nrow(tab1)/length(series)/2)

var2 <- matrix(NA, ncol=length(series),
nrow=nrow(tab2)/length(series)/2)

peso2 <- matrix(NA, ncol=length(series),
nrow=nrow(tab2)/length(series)/2)

var3 <- matrix(NA, ncol=length(series),
nrow=nrow(tab3)/length(series)/2)

peso3 <- matrix(NA, ncol=length(series),
nrow=nrow(tab3)/length(series)/2)

for(i in 1:length(series)){

var1[,i] <- tab1Valor[tab1`Variável (Código)`==63&
tab1`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]  var2[,i] <- tab2Valor[tab2`Variável (Código)`==63& tab2`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]

var3[,i] <- tab3Valor[tab3`Variável (Código)`==63&
tab3`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]  peso1[,i] <- tab1Valor[tab1`Variável (Código)`==66& tab1`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]

peso2[,i] <- tab2Valor[tab2`Variável (Código)`==66&
tab2`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]  peso3[,i] <- tab3Valor[tab3`Variável (Código)`==66& tab3`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]
}

variacao = ts(rbind(var1, var2, var3), start=c(2006,07), freq=12)
peso = ts(rbind(peso1, peso2, peso3), start=c(2006,07), freq=12)

Assim, a inflação medida pelo IPCA nada mais será do que a variação vezes o respectivo peso do grupo. Com isso em mente, nós podemos gerar a previsão para cada grupo e depois recuperar a previsão da inflação cheia a partir dessas previsões individuais. O resultado é exposto no gráfico abaixo.

A previsão para a inflação em janeiro, por essa metodologia, é de 0,47%.

________________

(*) Para aprender a fazer esse tipo de projeção, veja nossos cursos de Previsão Macroeconométrica e Modelos Preditivos aplicados à Macroeconomia.

(**) Os códigos completos do exercício estão disponíveis no Clube AM.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.