Google Trends e previsão do desemprego no Brasil

A pandemia do coronavírus impôs diversos desafios para a humanidade, nos mais diferentes campos. Em termos de previsão de variáveis macroeconômicas, não é diferente. O ajuste dos modelos tem sido um desafio para economistas e analistas de mercado, que possuem a árdua e ingrata tarefa de antecipar eventos futuros. Pensando nisso, nesse Comentário de Conjuntura buscamos implementar um modelo de previsão para a taxa de desemprego medida pela PNAD Contínua que utiliza termos de busca do Google Trends.

A base de dados do Google Trends é hoje em dia bastante conhecida por especialistas que se dedicam à tarefa de forecasting, tendo um amplo conjunto de artigos e papers que fazem uso da mesma para esse fim. D´Amuri e Marcucci, 2017, por exemplo, fazem uso dessa base para construir um modelo de previsão para o desemprego nos Estados Unidos. Os resultados encontrados sugerem que essa base de dados é um bom preditor para a taxa de desemprego norte-americana.

Tendo o mesmo objetivo que os autores, nós revisamos um modelo de cointegração para o desemprego que inclui os termos de busca empregos seguro desemprego, que são ilustrados acima. A inclusão do termo seguro desemprego procura "tratar" o efeito pandemia, que causou um forte choque sobre a taxa de desemprego medida pela PNAD Contínua, como pode ser visto abaixo.

Além dos termos de busca do GT, também adicionamos mais algumas co-variáveis ao modelo, listadas a seguir.

O modelo é implementado, então, no R, com o auxílio da biblioteca vars e uso da metodologia de Johansen. A seguir, um gráfico que apresenta a previsão fora da amostra considerada.

Os códigos que implementam o exercício estão disponíveis para os membros do Clube AM.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.