Google Trends e previsão do desemprego no Brasil

A pandemia do coronavírus impôs diversos desafios para a humanidade, nos mais diferentes campos. Em termos de previsão de variáveis macroeconômicas, não é diferente. O ajuste dos modelos tem sido um desafio para economistas e analistas de mercado, que possuem a árdua e ingrata tarefa de antecipar eventos futuros. Pensando nisso, nesse Comentário de Conjuntura buscamos implementar um modelo de previsão para a taxa de desemprego medida pela PNAD Contínua que utiliza termos de busca do Google Trends.

A base de dados do Google Trends é hoje em dia bastante conhecida por especialistas que se dedicam à tarefa de forecasting, tendo um amplo conjunto de artigos e papers que fazem uso da mesma para esse fim. D´Amuri e Marcucci, 2017, por exemplo, fazem uso dessa base para construir um modelo de previsão para o desemprego nos Estados Unidos. Os resultados encontrados sugerem que essa base de dados é um bom preditor para a taxa de desemprego norte-americana.

Tendo o mesmo objetivo que os autores, nós revisamos um modelo de cointegração para o desemprego que inclui os termos de busca empregos seguro desemprego, que são ilustrados acima. A inclusão do termo seguro desemprego procura "tratar" o efeito pandemia, que causou um forte choque sobre a taxa de desemprego medida pela PNAD Contínua, como pode ser visto abaixo.

Além dos termos de busca do GT, também adicionamos mais algumas co-variáveis ao modelo, listadas a seguir.

O modelo é implementado, então, no R, com o auxílio da biblioteca vars e uso da metodologia de Johansen. A seguir, um gráfico que apresenta a previsão fora da amostra considerada.

Os códigos que implementam o exercício estão disponíveis para os membros do Clube AM.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Analisando o sentimento da política monetária com IA usando Python

Análise de sentimentos é uma técnica de Processamento de Linguagem Natural (PLN) que serve para revelar o sentimento contido em um texto. Neste exercício, aplicamos esta técnica para analisar as atas das reuniões do COPOM, revelando o que os diretores de política monetária discutem nas entrelinhas. Utilizando um modelo de Inteligência Artificial através do Python, produzimos ao final um índice de 0 a 100 para sintetizar a análise histórica.

Como a IA pode auxiliar na otimização de Portfólio de Investimentos?

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Prevendo múltiplas séries usando IA no Python

Como podemos realizar previsões para várias séries temporais simultaneamente? Para abordar essa questão, empregamos a biblioteca MLForecastdo Python. Esta biblioteca disponibiliza uma variedade de modelos e funcionalidades para realizar previsões em séries temporais utilizando técnicas de aprendizado de máquina. Demonstramos sua aplicação ao prever as curvas de energia horária em quatro regiões distintas do Brasil.

Esse exercício é uma continuação do exercício “Usando IA para prever o consumo de energia no Brasil com Python”.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.