IBOVESPA deve chegar aos 100 mil pontos em breve

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

O principal índice da Bolsa de SP, o IBOVESPA, se aproxima da inédita marca dos 100 mil pontos. E não demorará muito, dado que o mercado segue confiante na agenda econômica do novo governo, que inclui privatizações e reformas, em particular a reforma da previdência. Para coletar os dados do IBOV com o R, como fazemos em nosso curso de Econometria Financeira usando o R, podemos utilizar o pacote quantmod como no código abaixo.


library(quantmod)

## Ibovespa
env = new.env()
getSymbols("^BVSP",src="yahoo", 
env=env,
from=as.Date('2018-12-01'))
ibovespa = env$BVSP[,4]
ibovespa = ibovespa[complete.cases(ibovespa)] 

Uma vez que pegamos os dados do índice, podemos plotar um gráfico na sequência.


autoplot(ibovespa)+
geom_line(size=.8, colour='red')+
xlab('')+ylab('Pontos')+
scale_x_date(date_breaks = '7 days',
labels = date_format("%b %d"))+
labs(title='Índice Bovespa',
caption='Fonte: analisemacro.com.br com dados do Yahoo Finance.')

E o gráfico segue abaixo...

A ascensão do índice se correlaciona com a proximidade do novo governo e, portanto, com os pronunciamentos da nova equipe econômica. Conheça nossos Cursos Aplicados de R para saber como coletar, tratar, analisar e apresentar dados como esse utilizando uma das mais poderosas ferramentas de data science atualmente disponíveis!

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise exploratória para modelagem preditiva no Python

Antes de desenvolver bons modelos preditivos é necessário organizar e conhecer muito bem os dados. Neste artigo, damos algumas dicas de recursos, como gráficos, análises e estatísticas, que podem ser usados para melhorar o entendimento sobre os dados usando Python.

Como usar modelos do Sklearn para previsão? Uma introdução ao Skforecast

Prever séries temporais é uma tarefa frequente em diversas áreas, porém exige conhecimento e ferramentas específicas. Os modelos de machine learning do Sklearn são populadores, porém são difíceis de aplicar em estruturas temporais de dados. Neste sentido, introduzimos a biblioteca Skforecast, que integra os modelos do Sklearn e a previsão de séries temporais de forma simples.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.