Incerteza e atividade econômica

A pandemia do coronavírus vai ter um forte impacto sobre o nível de atividade, como já antecipam os primeiros indicadores antecedentes até aqui divulgados. É provável que seja o maior choque exógeno da nossa geração. Isso dito, um problema imediato surge: como quantificar os efeitos da pandemia sobre a economia?

Uma estratégia é utilizar indicadores correlacionados a choques como esse. Os candidatos mais óbvios são os indicadores de incerteza e de volatilidade. Abaixo, trazemos dois deles. O primeiro é o índice de incerteza econômica (IIE), produzido pelo núcleo de estatística da FGV. O segundo é o VIX, que mede volatilidade e é produzido pelo CBOE.

Os gráficos acima mostram que momentos de maior incerteza estão associados a choques como esse que estamos vivendo. E, como podemos ver a seguir, incerteza e nível de atividade, aqui representado pelo hiato do produto, estão negativamente correlacionados. Isto é, maiores níveis de incerteza estão correlacionados com hiato mais negativo.

Diversos estudos, inclusive, mostram que choques de incerteza provocam queda no crescimento econômico e, consequentemente, abertura do hiato. Na edição 52 do Clube do Código, por exemplo, nós verificamos o efeito da incerteza sobre variáveis macroeconômicas selecionadas, como o crescimento econômico. Os resultados encontrados sugerem que há uma redução no crescimento do PIB quando do efeito de um choque de incerteza.

Ademais, ao verificarmos a decomposição de variância entre as variáveis, é possível verificar que a incerteza tem grande impacto sobre a variância da proxy que representa o nível de atividade.

Isso dito, podemos esperar um grande impacto sobre o nível de atividade vindo da pandemia do coronavírus. A dimensão do impacto, contudo, ainda é bastante incerta. Vai depender, por exemplo, do tempo em que a economia brasileira será mantida em quarentena e, também, de como serão as medidas de política econômica e de política pública a serem adotadas pelo governo.

________________________

(*) Aprenda a produzir exercícios como esse em nossos Cursos Aplicados de R.

(**) Os códigos estão disponíveis no Clube do Código.


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

As diferentes formas de avaliar o erro de um modelo de previsão

Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.

Previsão do CPI usando text mining

Exploramos neste exercício, de forma similar a Ferreira (2022), a utilidade de tópicos latentes extraídos dos comunicados do FOMC, por um modelo LDA, na previsão da inflação norte-americana, medida pelo CPI. O objetivo é comparar um modelo econométrico simples, tal como um AR-GAP de Faust e Wright (2013), em especificações com e sem os fatores textuais.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!