Incerteza vs. Capacidade Instalada

É razoável supor que variáveis como incerteza e utilização da capacidade instalada da indústria de transformação andem juntas. Isto porque, uma vez que haja incerteza sobre o organismo econômico, tudo nos leva a acreditar que a utilização da capacidade instalada será menor. De modo a ilustrar esse movimento, podemos fazer uso das séries da Fundação Getúlio Vargas (FGV) para esses dois indicadores. Como de praxe, vamos carregar alguns pacotes.


library(readr)
library(ggplot2)
library(scales)
library(gridExtra)
library(BMR)

Os dados estão disponíveis no arquivo data.csv e são importados com o pacote readr.


data = read_csv2('data.csv',
col_types = list(col_date(format='%d/%m/%Y'),
col_double(),
col_double()))

Podemos, então, construir um gráfico com as nossas variáveis como abaixo, de modo a visualizar tanto as séries quanto a relação entre elas.

Como se pode ver, existe, de fato, uma relação negativa entre as variáveis. Mais incerteza está relacionada a menos uso da capacidade instalada. Isso visto, estimei um BVAR para ver o efeito de um choque da incerteza sobre a NUCI. As funções de impulso-resposta são colocadas abaixo.

Um choque na incerteza faz a utilização da capacidade instalada ser menor, como pode ser visto pela função impulso-resposta. Em outros termos, para que a economia volte a crescer é peremptório que tenhamos uma redução da incerteza. Contribui para isso um Congresso e um Executivo comprometidos com a agenda de reformas.

____________________

Os códigos desse Comentário estarão disponíveis, como de hábito, no Clube do Código.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.