Incerteza vs. Capacidade Instalada

É razoável supor que variáveis como incerteza e utilização da capacidade instalada da indústria de transformação andem juntas. Isto porque, uma vez que haja incerteza sobre o organismo econômico, tudo nos leva a acreditar que a utilização da capacidade instalada será menor. De modo a ilustrar esse movimento, podemos fazer uso das séries da Fundação Getúlio Vargas (FGV) para esses dois indicadores. Como de praxe, vamos carregar alguns pacotes.


library(readr)
library(ggplot2)
library(scales)
library(gridExtra)
library(BMR)

Os dados estão disponíveis no arquivo data.csv e são importados com o pacote readr.


data = read_csv2('data.csv',
col_types = list(col_date(format='%d/%m/%Y'),
col_double(),
col_double()))

Podemos, então, construir um gráfico com as nossas variáveis como abaixo, de modo a visualizar tanto as séries quanto a relação entre elas.

Como se pode ver, existe, de fato, uma relação negativa entre as variáveis. Mais incerteza está relacionada a menos uso da capacidade instalada. Isso visto, estimei um BVAR para ver o efeito de um choque da incerteza sobre a NUCI. As funções de impulso-resposta são colocadas abaixo.

Um choque na incerteza faz a utilização da capacidade instalada ser menor, como pode ser visto pela função impulso-resposta. Em outros termos, para que a economia volte a crescer é peremptório que tenhamos uma redução da incerteza. Contribui para isso um Congresso e um Executivo comprometidos com a agenda de reformas.

____________________

Os códigos desse Comentário estarão disponíveis, como de hábito, no Clube do Código.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como avaliar modelos de IA na previsão macroeconômica?

Descubra como economistas e cientistas de dados estão combinando econometria e inteligência artificial para aprimorar previsões macroeconômicas. Neste post, você vai entender as principais etapas de avaliação de modelos — da preparação dos dados à validação cruzada — e conhecer as métricas e técnicas que revelam quais métodos realmente entregam as melhores previsões. Uma leitura essencial para quem quer compreender o futuro da análise econômica orientada por dados.

Análise exploratória e seleção de séries temporais econômicas para modelagem

Quer entender como transformar dados econômicos brutos em previsões macroeconômicas precisas? Neste post, mostramos passo a passo como realizar a análise exploratória e seleção de séries temporais com Python — desde o tratamento de dados e remoção de multicolinearidade até a escolha das variáveis mais relevantes usando técnicas de machine learning e econometria. Um guia essencial para quem quer unir teoria econômica e inteligência artificial na prática da previsão macroeconômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.