Investigando cointegração entre consumo de energia e crescimento do PIB

Como tenho comentado nas últimas semanas, estamos tendo acesso aos primeiros dados de março que trazem os efeitos da pandemia do coronavírus sobre a economia brasileira. Um dos indicadores que tenho acompanhado mais de perto é o consumo diário de energia elétrica. Como comentei também por aqui, publicamos na semana passada a Edição 73 do Clube do Código, que traz uma intensa investigação da relação dessa série com o PIB, tanto em nível quanto em termos de taxa de crescimento.

Nesse Comentário de Conjuntura trago mais alguns detalhes do exercício. O mesmo está disponível no repositório privado do Clube no github, acessível para alunos do plano premium dos nossos Cursos Aplicados de R e para os assinantes do Clube. Para assinar, clique aqui. A seguir, carregamos os pacotes utilizados na investigação.


library(tidyverse)
library(scales)
library(readxl)
library(xts)
library(forecast)
library(sidrar)
library(lubridate)
library(zoo)
library(gridExtra)
library(tstools)
library(vars)
library(aod)
library(dynlm)
library(stargazer)
### Pacote Seasonal
library(seasonal)
Sys.setenv(X13_PATH = "C:/Séries Temporais/R/Pacotes/seas/x13ashtml")

A seguir, nós importamos as séries de energia e do PIB.


## Coleta de dados de energia
energia = read_csv2('energia.csv',
col_types = list(col_date(format='%d/%m/%Y'),
col_double()))

## Coletar dados do PIB
# PIB com ajuste sazonal
pib_sa = get_sidra(api='/t/1621/n1/all/v/all/p/all/c11255/90707/d/v584%202') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
dplyr::select(date, Valor) %>%
as_tibble()
# PIB sem ajuste
names = c('date', 'pib_sa', 'pib', 'anual_pib')
pib = get_sidra(api='/t/1620/n1/all/v/all/p/all/c11255/90707/d/v583%202') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
mutate(pib_sa = pib_sa$Valor) %>%
mutate(anual_pib = acum_i(Valor, 4)) %>%
dplyr::select(date, pib_sa, Valor, anual_pib) %>%
as_tibble() %>%
`colnames<-`(names)

Os dados de energia e do PIB estão com frequências diferentes, de modo que é preciso torná-las comparáveis. O código a seguir trata disso.


## Trimestralizar dados de Energia
consumo_energia = xts(energia$carga, order.by = energia$date)
consumo_energia_trimestral = apply.quarterly(consumo_energia, FUN=mean)
consumo_energia_trimestral_ts = ts(consumo_energia_trimestral,
start=c(2000,01), freq=4)
consumo_energia_trimestral_sa = final(seas(consumo_energia_trimestral_ts))
energia_trimestral = tibble(date = as.yearqtr(index(consumo_energia_trimestral_sa), format='%Y%q'),
carga=consumo_energia_trimestral_sa) %>%
mutate(anual_carga = acum_i(carga,4))

## Reunir dados
data = inner_join(pib, energia_trimestral, by='date') %>%
dplyr::select(date, pib_sa, carga, anual_pib, anual_carga) %>%
drop_na()

Com os dados comparáveis, nós plotamos o gráfico abaixo.

Uma das várias coisas que fazemos na Edição 73 do Clube do Código é estimar um modelo de correção de erros (ECM) entre as séries, uma vez que as mesmas guardam uma relação de longo prazo entre si. O modelo estimado é o seguinte:

(1)   \begin{align*} \Delta Carga_t = \gamma_0 + \gamma_1 \hat{u_{t-1}} + \gamma_2 \Delta PIB_t + \varepsilon_t \end{align*}

A tabela a seguir resume o modelo estimado.

Dependent variable:
d(anual_carga)
stats::lag(resid, -1) -0.189***
(0.055)
d(anual_pib) 1.032***
(0.183)
Constant 0.147
(0.184)
Observations 72
R2 0.403
Adjusted R2 0.386
Residual Std. Error 1.558 (df = 69)
F Statistic 23.273*** (df = 2; 69)
Note: *p<0.1; **p<0.05; ***p<0.01

 

(*) Aprenda a produzir exercícios como esse em nossos Cursos Aplicados de R.

(**) Os códigos estão disponíveis no Clube do Código.


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.