Mais desemprego, menor a proporção de emprego com carteira na população ocupada

Escrevi nesse espaço no último domingo sobre a forte relação (negativa) entre a taxa de desemprego e a razão entre emprego com carteira e população ocupada. Isto é, mais desemprego está associado a menos emprego formal como proporção da população ocupada. Naquela oportunidade, meu ponto principal era mostrar que mesmo para níveis muito baixos de desemprego, o grau de formalização era pouco superior à metade da população ocupada.

Volto ao tema nesse Comentário de Conjuntura, cujos códigos completos estarão disponíveis logo mais no Clube do Código, para revelar que não apenas existe uma correlação forte entre as séries, mas também há uma relação de causalidade unidirecional entre elas, se aplicado às mesmas a metodologia proposta por Toda e Yamamoto (1995). De modo a relembrar, abaixo o código que carrega alguns pacotes e importa o arquivo clt.csv, contendo as séries que utilizei no exercício.


library(magrittr)
library(dplyr)
library(readr)
library(ggplot2)
library(scales)
library(forecast)
library(vars)
library(aod)
### Pacote Seasonal
library(seasonal)
Sys.setenv(X13_PATH = "C:/Séries Temporais/R/Pacotes/seas/x13ashtml")

data = read_csv2('clt.csv',
col_types = list(col_date(format='%d/%m/%Y'),
col_double(), col_double(),
col_double())) %>%
mutate(razao = po_carteira/po*100)

desemprego_sa = ts(data$desemprego, start=c(2002,03), freq=12)
desemprego_sa = final(seas(desemprego_sa))

data = mutate(data, desemprego_sa=desemprego_sa)

E a seguir, um gráfico das séries de desemprego com ajuste sazonal e a razão entre população ocupada com carteira assinada e população ocupada total.

Como mostrei no post anterior, há uma forte correlação negativa entre as séries de -0,93. A relação entre as séries, contudo, não fica apenas nisso. Além de correlacionadas, existe uma relação de causalidade unidirecional entre elas. Para verificar esse ponto, utilizamos a metodologia proposta por Toda e Yamamoto (1995), já que as séries não são estacionárias em nível. O código a seguir implementa o teste.


################ TESTE DE CAUSADALIDE #########################
### VAR(1)
subdata = data[,5:6]
var1 <- VAR(subdata, p=1, type='none')
serial.test(var1)
### Teste de Wald
var2 <- VAR(subdata, p=2, type='none')
### Wald Test 01: Desemprego não granger causa formalização
wald.test(b=coef(var2$varresult[[1]]),
Sigma=vcov(var2$varresult[[1]]),
Terms=2)

### Wald Test 02: formalização não granger causa desemprego
wald.test(b=coef(var2$varresult[[2]]),
Sigma=vcov(var2$varresult[[2]]),
Terms= 1)

De fato, quando a hipótese nula é que o desemprego não granger causa a razão de formalização, temos uma rejeição da mesma. Para o caso contrário, nós não conseguimos essa rejeição. Assim, podemos dizer que mais desemprego causa menos formalização no mercado de trabalho. O que, diga-se, é meio intuitivo. À medida que a taxa de desemprego aumenta, as pessoas costumam se virar, o que aumenta a proporção de emprego informal na população ocupada.

Tudo isso dito, meu ponto no post anterior é bastante simples: mesmo para níveis muito baixos de desemprego, o emprego com carteira alcançou pouco mais da metade da população ocupada. Isso sugere que é impossível universalizar o emprego com carteira assinada para toda a população ocupada.

__________________

Toda H.Y.; Yamamoto T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics, 66, 225–250. 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.