Medindo o efeito da incerteza sobre o PIB Mensal

Mesmo após a redução dos níveis de incerteza vistos no ano passado, há ainda muito por percorrer para um patamar considerado aceitável. Uma elevação da incerteza, sabemos da teoria econômica, acaba por adiar investimentos e mesmo decisões de consumo de bens duráveis, o que tem efeitos não desprezíveis sobre o PIB. Nesse Comentário de Conjuntura, verificamos através de funções impulso-resposta como a incerteza afeta a variação acumulada em 12 meses do PIB mensal.

Para ilustrar o efeito da incerteza sobre o PIB, usamos as séries da Fundação Getúlio Vargas: o índice de incerteza econômica e o Monitor do PIB mensal.

Uma vez disponíveis as séries, nós verificamos se existe cointegração entre elas por meio da metodologia de Johansen. Rejeitada a hipótese nula de inexistência de cointegração, seguimos o protocolo de Johansen e não conseguimos rejeitar que existe ao menos um vetor de cointegração entre as séries.

Uma vez, então, construído o modelo VEC, nós transformamos o mesmo em um modelo VAR em nível e observamos o efeito de um impulso sobre a incerteza na variação acumulada em 12 meses do PIB mensal. O resultado é posto abaixo.

De fato, existe um efeito negativo do aumento da incerteza sobre a variação do PIB mensal, como esperado pela teoria econômica.

(*) Todos os detalhes do exercício estão disponíveis no Curso de Macroeconometria II da Análise Macro.

____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.