Modelos SARIMA

Modelos SARIMA são modelos da classe de modelos univariados de séries temporais. O acrônimo SARIMA significa modelos AutoRegressivos Integrados de Médias Móveis com Sazonalidade. São modelos bastante úteis para gerar previsão de séries temporais quando, em geral, não estão disponíveis variáveis preditoras. O aspecto mais interessante desse tipo de abordagem é justamente colocar a parte sazonal da série dentro do modelo.

Um processo autorregressivo de ordem p pode ser representado como

(1)   \begin{equation*} y_{t} = \beta_{0} + \beta_{1}y_{t-1} + \beta_{2}y_{t-2} + ... + \beta_{p}y_{t-p} + \varepsilon_{t} \end{equation*}

Ou, alternativamente, utilizando o operador defasagem L^{k}y_{t} = y_{t-k} como

(2)   \begin{equation*} (1-\beta_{1}L - \beta_{2}L^2 - ... \beta_{p}L^p)y_{t} = \beta_{0} + \varepsilon_{t} \end{equation*}

Ou ainda em notação polinomial

(3)   \begin{equation*} \beta_{p}(L)y_{t} = c + \varepsilon_{t}  \end{equation*}

Onde c=\beta_{0}.  Abaixo simulamos alguns processos autorregressivos de ordem 1 no R, com diferentes valores para \beta_{1}.

Considerando, assim, um processo AR(1), como

(4)   \begin{equation*} y_{t} = c + \beta_{1}y_{t-1} + \varepsilon_{t} \end{equation*}

teremos um \emph{ruído branco} quando \beta_{1} = 0, um \emph{passeio aleatório} quando \beta_{1} = 1 e c=0 ou, quando c \neq 0, um \emph{passeio aleatório com drift}. Analogamente, podemos representar um processo de média móvel MA(q) como

(5)   \begin{equation*} y_{t} = \mu + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + ... + \theta_{q}\varepsilon_{t-q}  \end{equation*}

Ou, alternativamente, utilizando o operador defasagem, como

(6)   \begin{equation*} y_{t} = \mu + (1 + \theta_{1}L + \theta_{2}L^2 + ... \theta_{q}L^q)\varepsilon_{t}  \end{equation*}

Ou ainda em notação polinomial

(7)   \begin{equation*} y_{t} = \mu + \theta_{q}(L)\varepsilon_{t}  \end{equation*}

Utilizando o mesmo código acima, a propósito, podemos gerar alguns processos MA(1), modificando apenas o valor de \theta_{1}. Ademais, como vimos, podemos combinar as equações 1 e 5, construindo assim um processo ARMA(p,q), que pode ser representado como

(8)   \begin{equation*} y_{t} = c + \beta_{1}y_{t-1} + \beta_{2}y_{t-2} + ... + \beta_{p}y_{t-p} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + ... + \theta_{q}\varepsilon_{t-q}  \end{equation*}

Onde, novamente, c=\beta_{0}. Alternativamente, utilizando o operador defasagem

(9)   \begin{equation*} (1-\beta_{1}L - \beta_{2}L^2 - ... \beta_{p}L^p)y_{t} = c + (1 + \theta_{1}L + \theta_{2}L^2 + ... \theta_{q}L^q)\varepsilon_{t}  \end{equation*}

Ou ainda, em notação polinomial

(10)   \begin{equation*} \beta_{p}(L)y_{t} = c + \theta_{q}(L)\varepsilon_{t}  \end{equation*}

Podemos, enfim, generalizar nossa análise para um modelo ARIMA(p,d,q), onde d será a ordem de integração do processo. Ele pode ser representado em termos de notação polinomial como

(11)   \begin{equation*} \beta_{p}(L)(1 - L)^{d} y_{t} = c + \theta_{q}(L)\varepsilon_{t}  \end{equation*}

A equação 11 faz referência aos modelos ARIMA não sazonais. Os modelos ARIMA também são capazes de modelar uma ampla gama de dados sazonais. Um modelo ARIMA sazonal é formado pela inclusão de termos sazonais adicionais, na forma ARIMA (p,d,q) (P,D,Q)_m, onde o segundo componente faz referência à parte sazonal e m significa o número de períodos por estação. Em termos formais,

(12)   \begin{equation*} \phi_{P}(L^s) \beta_{p}(L) (1 - L^s)^D (1 - L)^{d} y_{t} = c + \theta_{q}(L) \Theta_{Q} (L^s) \varepsilon_{t}  \end{equation*}

_______________________________

(*) Para aprender mais, conheça nosso Curso de Análise de Séries Temporais.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.