Modelos SARIMA

Modelos SARIMA são modelos da classe de modelos univariados de séries temporais. O acrônimo SARIMA significa modelos AutoRegressivos Integrados de Médias Móveis com Sazonalidade. São modelos bastante úteis para gerar previsão de séries temporais quando, em geral, não estão disponíveis variáveis preditoras. O aspecto mais interessante desse tipo de abordagem é justamente colocar a parte sazonal da série dentro do modelo.

Um processo autorregressivo de ordem p pode ser representado como

(1)   \begin{equation*} y_{t} = \beta_{0} + \beta_{1}y_{t-1} + \beta_{2}y_{t-2} + ... + \beta_{p}y_{t-p} + \varepsilon_{t} \end{equation*}

Ou, alternativamente, utilizando o operador defasagem L^{k}y_{t} = y_{t-k} como

(2)   \begin{equation*} (1-\beta_{1}L - \beta_{2}L^2 - ... \beta_{p}L^p)y_{t} = \beta_{0} + \varepsilon_{t} \end{equation*}

Ou ainda em notação polinomial

(3)   \begin{equation*} \beta_{p}(L)y_{t} = c + \varepsilon_{t}  \end{equation*}

Onde c=\beta_{0}.  Abaixo simulamos alguns processos autorregressivos de ordem 1 no R, com diferentes valores para \beta_{1}.

Considerando, assim, um processo AR(1), como

(4)   \begin{equation*} y_{t} = c + \beta_{1}y_{t-1} + \varepsilon_{t} \end{equation*}

teremos um \emph{ruído branco} quando \beta_{1} = 0, um \emph{passeio aleatório} quando \beta_{1} = 1 e c=0 ou, quando c \neq 0, um \emph{passeio aleatório com drift}. Analogamente, podemos representar um processo de média móvel MA(q) como

(5)   \begin{equation*} y_{t} = \mu + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + ... + \theta_{q}\varepsilon_{t-q}  \end{equation*}

Ou, alternativamente, utilizando o operador defasagem, como

(6)   \begin{equation*} y_{t} = \mu + (1 + \theta_{1}L + \theta_{2}L^2 + ... \theta_{q}L^q)\varepsilon_{t}  \end{equation*}

Ou ainda em notação polinomial

(7)   \begin{equation*} y_{t} = \mu + \theta_{q}(L)\varepsilon_{t}  \end{equation*}

Utilizando o mesmo código acima, a propósito, podemos gerar alguns processos MA(1), modificando apenas o valor de \theta_{1}. Ademais, como vimos, podemos combinar as equações 1 e 5, construindo assim um processo ARMA(p,q), que pode ser representado como

(8)   \begin{equation*} y_{t} = c + \beta_{1}y_{t-1} + \beta_{2}y_{t-2} + ... + \beta_{p}y_{t-p} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + ... + \theta_{q}\varepsilon_{t-q}  \end{equation*}

Onde, novamente, c=\beta_{0}. Alternativamente, utilizando o operador defasagem

(9)   \begin{equation*} (1-\beta_{1}L - \beta_{2}L^2 - ... \beta_{p}L^p)y_{t} = c + (1 + \theta_{1}L + \theta_{2}L^2 + ... \theta_{q}L^q)\varepsilon_{t}  \end{equation*}

Ou ainda, em notação polinomial

(10)   \begin{equation*} \beta_{p}(L)y_{t} = c + \theta_{q}(L)\varepsilon_{t}  \end{equation*}

Podemos, enfim, generalizar nossa análise para um modelo ARIMA(p,d,q), onde d será a ordem de integração do processo. Ele pode ser representado em termos de notação polinomial como

(11)   \begin{equation*} \beta_{p}(L)(1 - L)^{d} y_{t} = c + \theta_{q}(L)\varepsilon_{t}  \end{equation*}

A equação 11 faz referência aos modelos ARIMA não sazonais. Os modelos ARIMA também são capazes de modelar uma ampla gama de dados sazonais. Um modelo ARIMA sazonal é formado pela inclusão de termos sazonais adicionais, na forma ARIMA (p,d,q) (P,D,Q)_m, onde o segundo componente faz referência à parte sazonal e m significa o número de períodos por estação. Em termos formais,

(12)   \begin{equation*} \phi_{P}(L^s) \beta_{p}(L) (1 - L^s)^D (1 - L)^{d} y_{t} = c + \theta_{q}(L) \Theta_{Q} (L^s) \varepsilon_{t}  \end{equation*}

_______________________________

(*) Para aprender mais, conheça nosso Curso de Análise de Séries Temporais.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar um Agente de IA coletor de dados

A tecnologia de agentes de IA está democratizando o acesso e a manipulação de dados econômicos complexos, tornando-a acessível mesmo para aqueles sem experiência em programação. Neste post discutimos a criação de agentes de IA para coletar dados econômicos brasileiros usando linguagem natural, como "Qual é a expectativa do IPCA para 2025?".

Como Criar um Agente Analista para Dados da Inflação com LangGraph

Este post mostra como automatizar a análise da inflação brasileira com o uso de agentes inteligentes. Utilizando o LangGraph, integramos dados do IPCA, núcleos de inflação e grupos do índice para criar um sistema capaz de gerar análises econômicas automatizadas com base em consultas em linguagem natural.

Como Criar um Agente para Análise da Atividade Econômica com LangGraph

Este post mostra como automatizar a análise da atividade econômica brasileira com agentes inteligentes. Utilizando o framework LangGraph e dados do IBGE e Banco Central, construímos um sistema capaz de gerar respostas analíticas a partir de perguntas em linguagem natural, unindo automação de consultas SQL e interpretação econômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.