Modelos SARIMA

Modelos SARIMA são modelos da classe de modelos univariados de séries temporais. O acrônimo SARIMA significa modelos AutoRegressivos Integrados de Médias Móveis com Sazonalidade. São modelos bastante úteis para gerar previsão de séries temporais quando, em geral, não estão disponíveis variáveis preditoras. O aspecto mais interessante desse tipo de abordagem é justamente colocar a parte sazonal da série dentro do modelo.

Um processo autorregressivo de ordem p pode ser representado como

(1)   \begin{equation*} y_{t} = \beta_{0} + \beta_{1}y_{t-1} + \beta_{2}y_{t-2} + ... + \beta_{p}y_{t-p} + \varepsilon_{t} \end{equation*}

Ou, alternativamente, utilizando o operador defasagem L^{k}y_{t} = y_{t-k} como

(2)   \begin{equation*} (1-\beta_{1}L - \beta_{2}L^2 - ... \beta_{p}L^p)y_{t} = \beta_{0} + \varepsilon_{t} \end{equation*}

Ou ainda em notação polinomial

(3)   \begin{equation*} \beta_{p}(L)y_{t} = c + \varepsilon_{t}  \end{equation*}

Onde c=\beta_{0}.  Abaixo simulamos alguns processos autorregressivos de ordem 1 no R, com diferentes valores para \beta_{1}.

Considerando, assim, um processo AR(1), como

(4)   \begin{equation*} y_{t} = c + \beta_{1}y_{t-1} + \varepsilon_{t} \end{equation*}

teremos um \emph{ruído branco} quando \beta_{1} = 0, um \emph{passeio aleatório} quando \beta_{1} = 1 e c=0 ou, quando c \neq 0, um \emph{passeio aleatório com drift}. Analogamente, podemos representar um processo de média móvel MA(q) como

(5)   \begin{equation*} y_{t} = \mu + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + ... + \theta_{q}\varepsilon_{t-q}  \end{equation*}

Ou, alternativamente, utilizando o operador defasagem, como

(6)   \begin{equation*} y_{t} = \mu + (1 + \theta_{1}L + \theta_{2}L^2 + ... \theta_{q}L^q)\varepsilon_{t}  \end{equation*}

Ou ainda em notação polinomial

(7)   \begin{equation*} y_{t} = \mu + \theta_{q}(L)\varepsilon_{t}  \end{equation*}

Utilizando o mesmo código acima, a propósito, podemos gerar alguns processos MA(1), modificando apenas o valor de \theta_{1}. Ademais, como vimos, podemos combinar as equações 1 e 5, construindo assim um processo ARMA(p,q), que pode ser representado como

(8)   \begin{equation*} y_{t} = c + \beta_{1}y_{t-1} + \beta_{2}y_{t-2} + ... + \beta_{p}y_{t-p} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + ... + \theta_{q}\varepsilon_{t-q}  \end{equation*}

Onde, novamente, c=\beta_{0}. Alternativamente, utilizando o operador defasagem

(9)   \begin{equation*} (1-\beta_{1}L - \beta_{2}L^2 - ... \beta_{p}L^p)y_{t} = c + (1 + \theta_{1}L + \theta_{2}L^2 + ... \theta_{q}L^q)\varepsilon_{t}  \end{equation*}

Ou ainda, em notação polinomial

(10)   \begin{equation*} \beta_{p}(L)y_{t} = c + \theta_{q}(L)\varepsilon_{t}  \end{equation*}

Podemos, enfim, generalizar nossa análise para um modelo ARIMA(p,d,q), onde d será a ordem de integração do processo. Ele pode ser representado em termos de notação polinomial como

(11)   \begin{equation*} \beta_{p}(L)(1 - L)^{d} y_{t} = c + \theta_{q}(L)\varepsilon_{t}  \end{equation*}

A equação 11 faz referência aos modelos ARIMA não sazonais. Os modelos ARIMA também são capazes de modelar uma ampla gama de dados sazonais. Um modelo ARIMA sazonal é formado pela inclusão de termos sazonais adicionais, na forma ARIMA (p,d,q) (P,D,Q)_m, onde o segundo componente faz referência à parte sazonal e m significa o número de períodos por estação. Em termos formais,

(12)   \begin{equation*} \phi_{P}(L^s) \beta_{p}(L) (1 - L^s)^D (1 - L)^{d} y_{t} = c + \theta_{q}(L) \Theta_{Q} (L^s) \varepsilon_{t}  \end{equation*}

_______________________________

(*) Para aprender mais, conheça nosso Curso de Análise de Séries Temporais.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Analisando o sentimento da política monetária com IA usando Python

Análise de sentimentos é uma técnica de Processamento de Linguagem Natural (PLN) que serve para revelar o sentimento contido em um texto. Neste exercício, aplicamos esta técnica para analisar as atas das reuniões do COPOM, revelando o que os diretores de política monetária discutem nas entrelinhas. Utilizando um modelo de Inteligência Artificial através do Python, produzimos ao final um índice de 0 a 100 para sintetizar a análise histórica.

Como a IA pode auxiliar na otimização de Portfólio de Investimentos?

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Prevendo múltiplas séries usando IA no Python

Como podemos realizar previsões para várias séries temporais simultaneamente? Para abordar essa questão, empregamos a biblioteca MLForecastdo Python. Esta biblioteca disponibiliza uma variedade de modelos e funcionalidades para realizar previsões em séries temporais utilizando técnicas de aprendizado de máquina. Demonstramos sua aplicação ao prever as curvas de energia horária em quatro regiões distintas do Brasil.

Esse exercício é uma continuação do exercício “Usando IA para prever o consumo de energia no Brasil com Python”.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.