Previsão da taxa de câmbio (R$/US$): é possível superar o Random Walk?

A taxa de câmbio é uma das variáveis mais difíceis de se gerar previsão quantitativa para alguns períodos à frente. Isso porque, são muitas as variáveis domésticas e externas que a influenciam. Não por outro motivo, há uma piada bastante conhecida entre os economistas de que Deus haveria de ter criado o câmbio para humilhá-los. Feita a ressalva, nesse Comentário de Conjuntura apresentamos um modelo de previsão para a taxa de câmbio, que replica o trabalho The unbeatable random walk in exchange rate forecasting: Reality or myth?proposto por Moosa, I. e K. Burns.

A aula completa e a replicação do modelo, de autoria do nosso Cientista de Dados Fernanda da Silva, estão disponíveis no nosso Curso de Modelos Preditivos aplicados à Macroeconomia.

A especificação do modelo estático é dada abaixo:

(1)   \begin{equation*} s_t = \alpha_0 + \alpha_1(m_{a,t} - m_{b,t}) + \alpha_2(y_{a,t} - y_{b,t}) + \alpha_3(i_{a,t} - i_{b,t}) + \varepsilon_t \end{equation*}

Onde s é o log da taxa de câmbio nominal, m é o log da oferta de moeda, y é o log da produção industrial, i é o log(1 + x/100) da taxa de juros, a e b se referem aos países em análise, Brasil e USA, respectivamente.

Já a especificação do modelo dinâmico é dada por:

(2)   \begin{equation*} s_t = \mu_t + \phi_t + \alpha_{1t}(m_{a,t} - m_{b,t}) + \alpha_{2t}(y_{a,t} - y_{b,t}) + \alpha_{3t}(i_{a,t} - i_{b,t}) + \varepsilon_t \end{equation*}

Onde \mu e \phi são as variáveis não observáveis - componentes extraídos de s_t - tendência e ciclo da variável dependente, respectivamente.

Os modelos são, então, comparados com o benchmark tradicional da literatura representado por um modelo Random Walk, além de outras especificações simples e previsões de agentes de mercado registradas no sistema de expectativas Focus/BCB.

Os dados utilizados são:

workflow proposto:

1. Obtenção das séries temporais nas bases de dados;
2. Tratamento prévio de dados;
3. Visualização dos dados;
4. Verificar estacionariedade (ADF, PP e KPSS) e aplicar diferenças necessárias, além de transformação logarítmica;
5. Estimação e previsão recursiva do modelo OLS estático e RW, considerando sequência crescente da amostra de dados (amostra inicial com 60 observações);
6. Benchmark com modelo OLS dinâmico (TVP) e expectativas do Focus<sup>1</sup>;
7. Escolha de modelo final e previsão fora da amostra.

O modelo para comparação da capacidade preditiva usado é um OLS TVP. Adicionalmente, comparamos as previsões dos modelos baseline e alternativo com as previsões dos agentes de mercado, reportadas no sistema de expectativas Focus/BCB.

O modelo OLS TVP demonstrou melhor performece, sendo estatisticamente mais acurado em relação a um modelo Random Walk, além de superar o benchmark de mercado (Focus).

_______________

A aula completa com o passo a passo de como replicar o modelo está disponível no Curso de Modelos Preditivos aplicados à Macroeconomia. Os códigos estão disponíveis no Clube AM.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.