Previsão da taxa de câmbio (R$/US$): é possível superar o Random Walk?

A taxa de câmbio é uma das variáveis mais difíceis de se gerar previsão quantitativa para alguns períodos à frente. Isso porque, são muitas as variáveis domésticas e externas que a influenciam. Não por outro motivo, há uma piada bastante conhecida entre os economistas de que Deus haveria de ter criado o câmbio para humilhá-los. Feita a ressalva, nesse Comentário de Conjuntura apresentamos um modelo de previsão para a taxa de câmbio, que replica o trabalho The unbeatable random walk in exchange rate forecasting: Reality or myth?proposto por Moosa, I. e K. Burns.

A aula completa e a replicação do modelo, de autoria do nosso Cientista de Dados Fernanda da Silva, estão disponíveis no nosso Curso de Modelos Preditivos aplicados à Macroeconomia.

A especificação do modelo estático é dada abaixo:

(1)   \begin{equation*} s_t = \alpha_0 + \alpha_1(m_{a,t} - m_{b,t}) + \alpha_2(y_{a,t} - y_{b,t}) + \alpha_3(i_{a,t} - i_{b,t}) + \varepsilon_t \end{equation*}

Onde s é o log da taxa de câmbio nominal, m é o log da oferta de moeda, y é o log da produção industrial, i é o log(1 + x/100) da taxa de juros, a e b se referem aos países em análise, Brasil e USA, respectivamente.

Já a especificação do modelo dinâmico é dada por:

(2)   \begin{equation*} s_t = \mu_t + \phi_t + \alpha_{1t}(m_{a,t} - m_{b,t}) + \alpha_{2t}(y_{a,t} - y_{b,t}) + \alpha_{3t}(i_{a,t} - i_{b,t}) + \varepsilon_t \end{equation*}

Onde \mu e \phi são as variáveis não observáveis - componentes extraídos de s_t - tendência e ciclo da variável dependente, respectivamente.

Os modelos são, então, comparados com o benchmark tradicional da literatura representado por um modelo Random Walk, além de outras especificações simples e previsões de agentes de mercado registradas no sistema de expectativas Focus/BCB.

Os dados utilizados são:

workflow proposto:

1. Obtenção das séries temporais nas bases de dados;
2. Tratamento prévio de dados;
3. Visualização dos dados;
4. Verificar estacionariedade (ADF, PP e KPSS) e aplicar diferenças necessárias, além de transformação logarítmica;
5. Estimação e previsão recursiva do modelo OLS estático e RW, considerando sequência crescente da amostra de dados (amostra inicial com 60 observações);
6. Benchmark com modelo OLS dinâmico (TVP) e expectativas do Focus<sup>1</sup>;
7. Escolha de modelo final e previsão fora da amostra.

O modelo para comparação da capacidade preditiva usado é um OLS TVP. Adicionalmente, comparamos as previsões dos modelos baseline e alternativo com as previsões dos agentes de mercado, reportadas no sistema de expectativas Focus/BCB.

O modelo OLS TVP demonstrou melhor performece, sendo estatisticamente mais acurado em relação a um modelo Random Walk, além de superar o benchmark de mercado (Focus).

_______________

A aula completa com o passo a passo de como replicar o modelo está disponível no Curso de Modelos Preditivos aplicados à Macroeconomia. Os códigos estão disponíveis no Clube AM.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Criar um Agente Analista para Dados da Inflação com LangGraph

Este post mostra como automatizar a análise da inflação brasileira com o uso de agentes inteligentes. Utilizando o LangGraph, integramos dados do IPCA, núcleos de inflação e grupos do índice para criar um sistema capaz de gerar análises econômicas automatizadas com base em consultas em linguagem natural.

Como Criar um Agente para Análise da Atividade Econômica com LangGraph

Este post mostra como automatizar a análise da atividade econômica brasileira com agentes inteligentes. Utilizando o framework LangGraph e dados do IBGE e Banco Central, construímos um sistema capaz de gerar respostas analíticas a partir de perguntas em linguagem natural, unindo automação de consultas SQL e interpretação econômica.

Introdução ao LangGraph

LangGraph é um framework em Python desenvolvido para gerenciar o fluxo de controle de aplicações que integram um modelo de linguagem (LLM). Com ele podemos construir Agentes de IA robustos e previsíveis.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.