Rolling Regression e Inércia Inflacionária no R

No nosso Curso de Macroeconometria II, nós vemos diversas técnicas econométricas aplicadas a variáveis macroeconômicas reais. Para ilustrar, vamos considerar nesse comentário de conjuntura o comportamento da inércia inflacionária no período recente através da técnica de rolling regression. A abordagem de regressão recursiva é frequentemente usada na análise de séries temporais para avaliar a estabilidade dos parâmetros do modelo em relação ao tempo.

Para isso, vamos precisar carregar alguns pacotes e coletar o dado da inflação mensal diretamente do Banco Central com o pacote BETS. Você também pode usar outros pacotes para isso, como o rbcb ou o Quandl ou ainda a própria API do Banco Central.


library(BETS)
library(lmtest)
library(forecast)
library(ggplot2)
library(scales)

### Importando a inflação mensal
ipca = BETSget(433, from='1999-06-01')

Eu peguei a inflação mensal a partir de junho de 1999, quando foi o publicado o decreto executivo sobre o regime de metas para inflação. Uma vez coletada a inflação, nós podemos construir nossa rolling regression. A ideia básica da regressão recursiva é tomar uma janela de observações e andar com ela ao longo da amostra disponível. Por exemplo, podemos criar uma janela com de 48 meses e estimar o nosso modelo para as primeiras 48 observações. Guardamos o parâmetro que interessa do modelo e andamos com a nossa janela, até chegar a última observação disponível.

Para fazer isso na prática, nós vamos precisar criar um loop, que basicamente automatiza o processo de andar com a nossa janela. Para não termos que repetir o processo acima n vezes.

Para fazer isso, primeiro, vamos setar algumas coisas, como o número de parâmetros a serem guardados e o tamanho da janela da rolling regression. Além disso, vamos criar matrizes para guardar os parâmetros estimados e os seus desvios-padrão.


### Criando matrizes que guardarão coeficientes e desvios-padrões
p <- 2 # Parâmetros a serem guardados
janela <- 48 # número de meses da janela
coefs <- matrix(NA, ncol = p, nrow = length(ipca)-janela)
dps <- matrix(NA, ncol = p, nrow = length(ipca)-janela)
colnames(coefs) <- c('AR(1)', 'Intercepto')
colnames(dps) <- c('AR(1)', 'Intercepto')

Uma vez que esteja tudo preparado para receber os valores, nós precisaremos estimar o nosso modelo. A ideia aqui é basicamente estimar um modelo AR(1), guardando assim o coeficiente autorregressivo que irá medir a inércia inflacionária ao longo do tempo.


### Loop para rodar o AR(1)
for (i in 1:nrow(coefs)){
ar1 <- Arima(ipca[(1+i-1):(janela+i-1)],
order=c(1,0,0))
coefs[i,] <- coef(ar1)
dps[i,] <- coeftest(ar1)[,2]
}

Uma vez estimado o modelo e guardado os parâmetros, nós podemos criar um gráfico como abaixo, que ilustrar o comportamento da inércia inflacionária ao longo do tempo. Isto é, o comportamento do coeficiente autorregressivo do nosso modelo AR(1).

Como se pode ver, há um recuo da inércia inflacionária a partir do início de 2018.

_____________________

(*) Isso e muito mais você irá aprender no nosso Curso de Macroeconometria II.


_____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.