Todo carnaval tem seu fim

A volta do carnaval foi marcada por forte correção no índice Bovespa. Ao longo do período de recesso no Brasil, as bolsas no exterior refletiam o mau humor com o alastramento do coronavírus pela Europa. A queda sofrida ontem pelo Ibovespa é comparável ao famoso Joesley Day, em 18 de maio de 2017, quando o índice caiu quase 9% em um único pregão. A taxa de câmbio também renovou máxima histórica, se aproximando de 4,44 R$/US$.

Abaixo, ilustramos o comportamento do Ibovespa e da taxa de câmbio a partir dos dados contidos no yahoo finance, que podem ser coletados com o pacote quantmod. Antes de mais nada, carregamos alguns pacotes.


library(quantmod)
library(ggplot2)
library(scales)
library(forecast)
library(readr)
library(xts)
library(gridExtra)
library(tidyverse)

E agora podemos pegar as séries que queremos.


## Pegar dados
getSymbols("BRL=X",src="yahoo")
getSymbols("^BVSP",src="yahoo")

Nós tratamos as séries, de modo a criar variações diárias para o IBOV e os log retornos para a taxa de câmbio.


df_ibov = tibble(time=as.Date(time(BVSP)),
ibov=BVSP$BVSP.Close) %>%
mutate(dibov = (BVSP$BVSP.Close/lag(BVSP$BVSP.Close,1)-1)*100)

df_cambio = tibble(time=as.Date(time(`BRL=X`)),
cambio = `BRL=X`[,4]) %>%
mutate(log_cambio = diff(log(cambio)))

De posse dos dados tratados, podemos gerar o gráfico abaixo.

O índice Bovespa caiu 7% em relação ao nível obtido no último pregão, fechando aos 105,7 mil pontos. Uma baita ressaca pós-carnaval...

___________________

(*) O código completo desse comentário estará disponível logo mais no Clube do Código.

(**) Aprenda a analisar dados em nossos Cursos Aplicados de R.

___________________


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que são Agentes de IA?

O que é um agente e como ele funciona? Como agentes tomam decisões usando racioncínio e planejamento? Neste artigo, nosso objetivo é investigar estas questões para construir um conhecimento fundamental sobre AI agents.

As diferentes formas de avaliar o erro de um modelo de previsão

Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.

Previsão do CPI usando text mining

Exploramos neste exercício, de forma similar a Ferreira (2022), a utilidade de tópicos latentes extraídos dos comunicados do FOMC, por um modelo LDA, na previsão da inflação norte-americana, medida pelo CPI. O objetivo é comparar um modelo econométrico simples, tal como um AR-GAP de Faust e Wright (2013), em especificações com e sem os fatores textuais.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.