Tratando dados previdenciários com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

Um dos grandes problemas ao se debater sobre reforma da previdência é a dificuldade de encontrar e tratar os dados. De forma a dar uma contribuição ao debate, com efeito, resolvi nesse sábado de manhã nublado no Rio produzir um pdf para o Clube do Código sobre como tratar dados previdenciários do INSS. A ideia é coletar os dados agregados referentes à despesa e receita diretamente da Secretaria do Tesouro Nacional, deflacionar esses dados com o IPCA, retirar a sazonalidade, de modo a visualizar os dados mais "limpos" e, por fim, anualizar os mesmos, de modo a produzir o gráfico abaixo, que ilustra o déficit da previdência ao longo do tempo. É, a propósito, o tipo de coisa que fazemos em nosso Curso de Analise de Conjuntura usando o R.

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2019/02/loteextra2.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/" url_new_window="off" use_overlay="off" animation="off" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]

 

[/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

O gráfico acima ilustra muito bem o comportamento da despesa e da receita previdenciária referente ao INSS ao longo do tempo. Como eu disse acima, porém, para chegar nele é preciso um bom trabalho de tratamento dos dados. Para começar, vamos baixar os dados referentes ao resultado primário do governo central, de onde podemos extrair os dados agregados do INSS. O código abaixo ilustra.


library(readxl)
url = 'https://bit.ly/2N9vtOh'
download.file(url, 'primario.xlsx', mode='wb')
data = read_excel('primario.xlsx', sheet='1.1', skip=4,
col_types = c('text', rep('numeric', 264)))
previdencia = t((data[c(14,36),-1]))

A matriz previdencia contém, então, os dados agregados de receita e despesa do INSS. Abaixo, para ilustrar para o leitor como a vida é dura, podemos ver como esses dados estão...

Muitos problemas, não é mesmo? Para começar, os dados estão em valores correntes ou nominais. Isso significa que não estamos considerando a inflação do período, de modo que não faz sentido comparar o dinheiro do ano x com o do ano y. Assim, precisamos deflacionar os mesmos. Para isso, porém, precisamos de um deflator. Vamos usar aqui o IPCA, que pode ser baixado do IBGE como no código abaixo.


library(sidrar)
### Importar IPCA 
ipca = get_sidra(api='/t/1737/n1/all/v/2266/p/all/d/v2266%2013')
ipca = ts(ipca$Valor, start=c(1979,12), freq=12)
ipca = window(ipca, start=c(1997,01), end=c(2018,12))
### Deflacionar Dados
nominal = ts(previdencia[,2:3], start=c(1997,01), freq=12)
real = ipca[length(ipca)]*(nominal/ipca)

Agora, temos uma matriz com os valores nominais e outra com os valores reais. O gráfico a seguir ilustra os valores reais.

Observe que em termos reais, a despesa continua acima da receita, mas repare que na ponta há uma queda em termos reais da receita (por quê?). Isso dito, observe que a visualização do gráfico ainda não é muito boa por conta da sazonalidade da série. Podemos fazer um ajuste sazonal nela, apenas como exercício, com o código abaixo.


### Pacote Seasonal
library(seasonal)
Sys.setenv(X13_PATH = "C:/Séries Temporais/R/Pacotes/seas/x13ashtml")
## Dessazonalizar Dados
receita = final(seas(real[,1]))
despesa = final(seas(real[,2]))
realsa = ts.intersect(receita,despesa)

A seguir, um gráfico para ilustrar os dados dessazonalizados...

Com os dados deflacionados e dessazonalizados, fica bem melhor a visualização, não é mesmo? Observe que uma coisa é bastante perceptível: as séries possuem uma tendência positiva ao longo do tempo. De fato, se você quiser criar uma taxa de crescimento, verá que elas crescem em média acima de 6% a.a., em termos reais!! Por fim, podemos gerar o primeiro gráfico desse post, de modo a suavizar ainda mais a nossa sérieanualizando os dados com o código a seguir.


### Acumular em 12 meses
real12 = real+lag(real,-1)+lag(real,-2)+lag(real,-3)+
lag(real,-4)+lag(real,-5)+lag(real,-6)+lag(real,-7)+
lag(real,-8)+lag(real,-9)+lag(real,-10)+lag(real,-11)

Observe que, primeiro, eu deflacionar os dados mensais e só depois acumulei eles em 12 meses. Com a matriz real12, por fim, podemos gerar aquele primeiro gráfico do post que ilustra perfeitamente a tendência de crescimento da despesa ao longo do tempo.

Com os dados tratados, podemos avançar para a próxima etapa da análise de dados que é construir um modelo para os gastos previdenciários. Isso fica para um próximo post! 🙂

O pdf completo estará disponível no Clube do Código na próxima semana!

_____________________________________

Conheça nossos Cursos Aplicados de R e aprenda a coletar, tratar, analisar e apresentar dados com o R!

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.