Um modelo preditivo para o desemprego medido pela PNAD

Amanhã, o IBGE divulga a taxa de desemprego medida pela PNAD Contínua referente ao mês de abril. Sazonalmente, o desemprego aumenta entre janeiro e março e começa a se reduzir a partir de abril. É o que deve ocorrer nesse ano, visto o que tem acontecido com o nível de atividade. Nesse Comentário de Conjuntura, nós atualizamos nosso modelo VEC de previsão para a taxa de desemprego, que é ensinado no Curso de Previsão Macroeconométrica usando o R.

No nosso modelo, utilizamos as seguintes variáveis explicativas: pesquisas no google trends, o índice antecedente de emprego da FGV, o índice de incerteza econômica também da FGV, o IBC-Br e a taxa básica de juros. A seguir, um gráfico com todas elas, mais o desemprego medido pela PNAD Contínua.

Uma vez coletadas as séries, procedemos o teste de johansen para verificar a existência de vetor de cointegração entre elas. O teste revela a existência de 2 vetores, o que nos leva a construir o modelo VEC.

A amostra é ainda dividida em treino e teste de forma a avaliar a acurácia do modelo, de acordo com as medidas convenientes. O modelo erra mais do que o desejado na amostra de teste, composta pelo período da pandemia. Um problema que econometristas de todo o mundo vem enfrentando nos dias atuais.

Feito o treino/teste, passamos para a previsão para os próximos meses. A tabela abaixo resume.

Previsões para a Taxa de Desemprego
Lower Média Upper
Abr/21 14.2 14.4 14.6
Mai/21 13.8 14.1 14.4
Jun/21 13.4 13.8 14.3
Jul/21 13.1 13.8 14.4
Ago/21 12.8 13.6 14.5
Set/21 12.3 13.4 14.6

A previsão para abril fica entre 14,2% e 14,6% da PEA, centrado em 14,4%. A expectativa é, por suposto, que o desemprego passe a ceder nos meses que seguem. Espera-se que nos próximos seis meses, haja um recuo de 1 ponto percentual na taxa, o que em termos absolutos significa menos 1 milhão de pessoas desempregadas.


Se confirmado, seria a melhor notícia dos últimos tempos...

____________________

(*) Para quem quiser ter acesso a todos os códigos desse e de todos os exercícios que publicamos ao longo da semana, visite o Clube AM.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados regionais do CAGED no Python

Os dados regionais do CAGED permitem analisar o mercado de trabalho de forma detalhada, em termos de setores, educação, rendimento e características pessoais dos trabalhadores brasileiros. Neste exercício mostramos como acessar estas informações online via Python.

Coletando dados de Setores Censitários do Censo 2022 no Python

Dados sobre a demografia e o território são primordiais para definir e implementar políticas públicas, áreas de atuação comercial e/ou estratégias de marketing. Sendo assim, saber usar os dados do Censo 2022 pode trazer vantagens competitivas. Neste exercício mostramos como obter os dados da Malha de Setores Censitários no formato vetorial (GeoJson) usando o Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.