Desembolsos do BNDES com o R: Grandes vs. MPMEs

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

Em palestra recente na UFMS, um aluno citou um documento intitulado Livro Verde para justificar o fato do BNDES emprestar mais para Micro, Pequenas e Médias Empresas (MPMEs) do que para Grandes Empresas. Disse na oportunidade que isso não era verdade, que os dados dizem justamente o contrário. Só hoje, porém, em uma manhã de sábado nublada no RJ, consegui parar para mostrar a evidência disso. Os dados utilizados são públicos, disponibilizados na página do Banco, em Transparência e depois em Central de Downloads - ver aqui. Como de hábito, importo os dados com o código abaixo, utilizando o \mathbf{R}:


## Carregar pacotes
library(XLConnect)
library(xts)
library(reshape2)
library(scales)
library(ggplot2)

## Importar e tratar dados
temp = tempfile()
download.file('http://bit.ly/2FOGP5Y', destfile=temp, mode='wb')
bndes = loadWorkbook(temp)
rm(temp)
bndes = readWorksheet(bndes, sheet=1, startRow=5,
 startCol=4, header=T)[,-5]
colnames(bndes) = c('micro', 'pequena', 'media', 'grande', 'total')
bndes = bndes[complete.cases(bndes),]
bndes <- bndes[-c(13,13*2, 13*3, 13*4, 13*5, 13*6, 13*7, 13*8,
 13*9,13*10, 13*11, 13*12, 13*13, 13*14, 13*15, 
 13*16, 13*17,nrow(bndes)),]

O código acima importa e trata os dados de desembolsos do BNDES por porte da empresa. Abaixo, eu somo os desembolsos das MPMEs e divido pelo total de desembolsos, de modo a obter a participação mensal das mesmas. Faço o mesmo para as grandes empresas.


## Criar variáveis

mpme = rowSums(bndes[,1:3])/bndes[,5]*100
grande = (bndes[,4])/bndes[,5]*100

Por fim, crio um gráfico de área de modo a ilustrar a participação de cada grupo no total de desembolsos.


## Criar gráfico

dates = seq(as.Date('2001-01-01'), as.Date('2018-01-01'), 
 by='1 month')

df = data.frame(mpme=mpme, grande=grande)
df = xts(df, order.by=dates)
df = data.frame(time=index(df), melt(as.data.frame(df)))

ggplot(df, aes(x = time, y = value)) + 
 geom_area(aes(colour = variable, fill = variable))+
 xlab('')+ylab('Participação Percentual')+
 labs(title='Desembolsos do BNDES: Grandes vs. MPME',
 caption='Fonte: analisemacro.com.br com dados do BNDES')+
 theme(legend.position = 'bottom',
 legend.title=element_blank())+
 scale_x_date(breaks = date_breaks("1 years"),
 labels = date_format("%Y"))

E o gráfico...

Pronto: a evidência do que eu afirmei na palestra está aí... 🙂

[/et_pb_text][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2017/11/cursosaplicados.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/" url_new_window="off" use_overlay="off" animation="off" sticky="off" align="left" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]

 

[/et_pb_image][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.