Juro a pessoa física ainda é exorbitante no Brasil

A despeito da forte queda na taxa básica de juros, a Selic, o juro para a pessoa física ainda permanece em níveis elevados. Para ilustrar, vamos pegar os dados diretamente do Banco Central com o código de R a seguir.


library(BETS)
library(ggplot2)
library(scales)

selic = BETSget(4189, from='2011-03-01', to='2019-12-01')
jurospf = BETSget(20740)

time = seq(as.Date('2011-03-01'), as.Date('2019-12-01'), by='1 month')
data = data.frame(time=time, selic=selic, jurospf=jurospf)

De posse dos dados, podemos construir o gráfico abaixo.

Como se vê, a despeito de estarem correlacionados ao longo do tempo, a diferença de nível é gritante. Enquanto a taxa básica de juros está em 4,25%, o juro médio para pessoa física permanece próximo a 50% a.a. Essa diferença leva em conta uma série de fatores, resumidos no que chamamos de spread bancário - a diferença entre o custo de captação e o de empréstimo. Existem vários fatores que explicam o spread, como, por exemplo, a inadimplência - ver a edição 60 do Clube do Código.

Nesse contexto, como já discuti nesse e em outros espaços, o juro para o tomador final tem tanto um componente macro quanto microeconômico. No primeiro, ele depende fortemente da taxa básica de juros, que é afetada por condições macroeconômicas de equilíbrio, como a situação fiscal do setor público.

A parte macro do problema avançou bastante nos últimos anos. Em particular, a aprovação do teto de gastos e a reforma da previdência tiveram impacto expressivo sobre o chamado juro de equilíbrio da economia brasileira.

O grosso do problema, contudo, ainda reside sobre o lado microeconômico. Em particular, o risco de crédito é um fator preponderante para explicar o nível ainda elevado do juro a pessoa física no Brasil. Ainda é muito difícil recuperar crédito no país, uma vez que ocorre inadimplência.

Para ilustrar, fizemos um exercício no Clube do Código que busca justamente dar luz a esses problemas - é a edição 50 do Clube. O modelo estimado é dado pela equação

(1)   \begin{align*} Juros^{tomador}_t = \beta_0 + \beta_1Juros^{ref}_{t-j} + \beta_2Inad_{t-k} + \beta_3 Incerteza_{t-l} + \sum_{i=1}^{3}D_i + \epsilon_t \end{align*}

Em que:

Juros^{tomador}: Taxa média de juros - recursos livres - pessoa física - total (SGS/BCB: 20740)

Juros^{ref}: Foram testadas as taxas Selic e Swap pré-DI 30, 60, 90, 120, 180 e 360. Por fim, utilizou-se a taxa Swap pré-DI 90 (SGS/BCB: 7818)

Inad: Inadimplência - pessoa física - total (SGS/BCB: 21112)

Incerteza: Foram testados a medida de risco-país (Embi) e o índice de incerteza da economia da FGV. O modelo final considerou este último.

D: dummies trimestrais.

{j,k,l}: indicam defasagens utilizadas.

Em conjunto, os resultados parecem corroborar a ideia de que a inadimplência é um fator relevante para explicar a taxa de juros ao tomador. Por outro lado, a incerteza apresenta significância estatística e, portanto, contribui para aumentar os juros ao tomador. Isto parece estar em linha com a ideia de uma postura mais conservadora dos bancos.

Mudar essa realidade, por fim, exige um ataque microeconômico de difícil operação. Passa não só por redução da assimetria entre oferta e demanda por crédito, como também maior celeridade no julgamento de processos de resgate de crédito. Esse último é a ponta mais difícil do processo.

(**) Aprenda a analisar dados em nossos Cursos Aplicados de R.

___________________


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.