Vamos desestatizar o mercado de crédito?

O novo ministro da economia, Paulo Guedes, ao tomar posse fez questão de mencionar a atual estrutura do mercado de crédito brasileiro. Guedes falou da necessidade de desestatizar o mercado. E será que faz sentido o que o ministro disse? Para mostrar, assim como fazemos em nossos Cursos Aplicados de R, podemos usar o R para ver o estoque de crédito na mão de instituições estatais e privadas. O código abaixo pega as séries de crédito para essas diferentes classes de instituições com o pacote rbcb.

library(rbcb)
privado <- get_series(2043, start_date = '2000-01-01')
estatal <- get_series(2007, start_date = '2000-01-01')

Uma vez que tenhamos esses dados, criamos um data frame dividindo as mesmas pelo total de estoque de crédito.

dates <- seq(as.Date('2000-01-01'), as.Date('2018-11-01'), by='1 month')

data <- data.frame(privado=privado$`2043`/(estatal$`2007`+privado$`2043`)*100,
                   estatal=estatal$`2007`/(estatal$`2007`+privado$`2043`)*100)

Utilizamos, então, o pacote xts para ordenar o data frame e depois a função melt para empilhar os dados.

library(xts)
library(reshape2)
data <- xts(data, order.by=dates)
data <- data.frame(time = index(data), melt(as.data.frame(data)))

Por fim, usamos o código abaixo para criar um gráfico ggplot.

library(scales)
library(ggplot2)
ggplot(data, aes(x = time, y = value)) + 
  geom_area(aes(colour = variable, fill = variable))+
  xlab('')+ylab('Participação Percentual')+
  labs(title='Crédito Estatal vs. Crédito Privado',
       caption='Fonte: analisemacro.com.br com dados do Banco Central.')+
  theme(legend.position = 'bottom',
        legend.title=element_blank())+
  scale_x_date(breaks = date_breaks("2 years"),
               labels = date_format("%Y"))

E o resultado é esse daí...

O gráfico parece dar razão a fala do novo ministro da economia. Mais da metade do estoque de operações de crédito no país está nas mãos de instituições estatais, sujeitas a incentivos distintos daqueles observados no mercado. Desestatizar o mercado de crédito parece ser, de fato, algo a se fazer, não é mesmo?

________________________________________________

Aprenda a coletar, tratar, analisar e apresentar dados reais em nossos Cursos Aplicados de R!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.