A avaliação do governo foi para o R

Uma das grandes vantagens de usar R é poder facilitar sua vida no momento de coletar e tratar dados. Para ilustrar, vamos supor, por exemplo, que tenhamos um arquivo .csv com dados de aprovação/desaprovação do governo federal. Vamos importar essa planilha para o R e mostrar um grande problema que ela tem.

data <- read.table('governo.csv', sep=';', dec=',', header=T)

data$DATE <- as.Date(data$DATE, format="%d/%m/%Y")

data <- xts(data[,c(2:4)], order.by = data$DATE)

Se plotarmos as colunas 1 e 2 do objeto data, respectivamente, aprovação e desaprovação do governo federal, obteremos algo como abaixo.

grafico01

Repare que o gráfico tem um grande problema. Por algum motivo, nosso arquivo .csv tem valores nulos em algumas linhas. Provavelmente porque nessas datas, não houve pesquisa de opinião. Isso tornar o gráfico poluído, não é mesmo? Para resolver isso, basta que retiremos esses valores do nosso objeto data. Isso é feito com a linha de código abaixo.

data <- data[!data$APROVA==0,]

Uma vez feito isso, podemos, agora assim, fazer um gráfico mais bonitinho com o código abaixo.

p <- autoplot(data[,c(1,2)], facets = F)

p + scale_colour_hue("Legenda", 
 labels=c('Aprovação', 
 'Desaprovação')) +
 ggtitle('Aprovação vs. Desaprovação do Governo Federal (%)')

E o resultado abaixo...

grafico02

Bem melhor, não? 🙂 O arquivo .csv aqui e o script do R aqui.

________________________________________________________________

Gostou? Veja nosso Curso de Introdução ao R. Aprenda a coletar, tratar, analisar e apresentar dados de forma bem mais produtiva!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar um Agente de IA analista de dados

Agentes de IA podem automatizar a coleta, tratamento e análise de indicadores econômicos, entregando insights prontos para a tomada de decisão. Combinando modelos de linguagem (LLM) avançados com ferramentas de acesso a dados, é possível construir soluções que buscam informações em tempo real e as processam de forma autônoma. Neste post mostramos uma visão geral sobre como isso tudo funciona.

Como Criar um Agente Analista Financeiro com LangGraph e Dados da CVM

Este post apresenta a construção de um sistema multiagente para análise financeira automatizada com LangGraph. A partir dos dados das demonstrações contábeis da CVM, mostramos como agentes especializados podem interpretar perguntas, consultar bancos de dados e gerar análises financeiras, simulando o trabalho de um analista.

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.