A avaliação do governo foi para o R

Uma das grandes vantagens de usar R é poder facilitar sua vida no momento de coletar e tratar dados. Para ilustrar, vamos supor, por exemplo, que tenhamos um arquivo .csv com dados de aprovação/desaprovação do governo federal. Vamos importar essa planilha para o R e mostrar um grande problema que ela tem.

data <- read.table('governo.csv', sep=';', dec=',', header=T)

data$DATE <- as.Date(data$DATE, format="%d/%m/%Y")

data <- xts(data[,c(2:4)], order.by = data$DATE)

Se plotarmos as colunas 1 e 2 do objeto data, respectivamente, aprovação e desaprovação do governo federal, obteremos algo como abaixo.

grafico01

Repare que o gráfico tem um grande problema. Por algum motivo, nosso arquivo .csv tem valores nulos em algumas linhas. Provavelmente porque nessas datas, não houve pesquisa de opinião. Isso tornar o gráfico poluído, não é mesmo? Para resolver isso, basta que retiremos esses valores do nosso objeto data. Isso é feito com a linha de código abaixo.

data <- data[!data$APROVA==0,]

Uma vez feito isso, podemos, agora assim, fazer um gráfico mais bonitinho com o código abaixo.

p <- autoplot(data[,c(1,2)], facets = F)

p + scale_colour_hue("Legenda", 
 labels=c('Aprovação', 
 'Desaprovação')) +
 ggtitle('Aprovação vs. Desaprovação do Governo Federal (%)')

E o resultado abaixo...

grafico02

Bem melhor, não? 🙂 O arquivo .csv aqui e o script do R aqui.

________________________________________________________________

Gostou? Veja nosso Curso de Introdução ao R. Aprenda a coletar, tratar, analisar e apresentar dados de forma bem mais produtiva!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados do Google Trends no R e no Python

Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.

Contribuição para a Volatilidade [Python]

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.