Coleta e tratamento de dados das Contas Nacionais Trimestrais com o R

No nosso Curso de Teoria Macroeconômica com Laboratórios de R, incentivamos nossos alunos a aplicarem os conhecimentos de R aprendidos em laboratórios aplicados. Para ilustrar o que vemos no Curso, vou mostrar o laboratório 5, onde é solicitado aos alunos a coleta e tratamento dos dados de poupança e da Formação Bruta de Capital com o R.

O código abaixo pega os dados diretamente do SIDRA/IBGE:


## Importação dos dados da poupança e da fbc
library(sidrar)
data = get_sidra(api='/t/2072/n1/all/v/933,940,941/p/all')

Na sequência, nós fazemos a organização dos dados.


library(tidyverse)
library(lubridate)
library(zoo)

dados <- data %>% select(`Trimestre (Código)`, Variável, Valor) %>%
pivot_wider(names_from=Variável, values_from=Valor) %>%
mutate(date=as.yearqtr(parse_date_time(`Trimestre (Código)`, '%y%q'))) %>%
select(-`Trimestre (Código)`)

Com os dados organizados, nós podemos anualizá-los com o código abaixo.


anuais <- dados %>%
mutate(`Produto Interno Bruto` = rollsum(`Produto Interno Bruto`, k=4, align='right', fill=NA),
`(=) Poupança bruta` = rollsum(`(=) Poupança bruta`, k=4, align='right', fill=NA),
`(-) Formação bruta de capital` = rollsum(`(-) Formação bruta de capital`, k=4, align='right', fill=NA))

Por fim, nós normalizamos nossos dados pelo PIB de forma poder compará-los.


pct <- anuais %>%
mutate(FBC=`(-) Formação bruta de capital`/`Produto Interno Bruto`*100,
Poupança=`(=) Poupança bruta`/`Produto Interno Bruto`*100,
.keep='unused')

O gráfico abaixo ilustra as séries obtidas.

________________

(*) Isso e muito mais você irá aprender no nosso Curso de Teoria Macroeconômica com Laboratórios de R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.