Coleta e tratamento de dados das Contas Nacionais Trimestrais com o R

No nosso Curso de Teoria Macroeconômica com Laboratórios de R, incentivamos nossos alunos a aplicarem os conhecimentos de R aprendidos em laboratórios aplicados. Para ilustrar o que vemos no Curso, vou mostrar o laboratório 5, onde é solicitado aos alunos a coleta e tratamento dos dados de poupança e da Formação Bruta de Capital com o R.

O código abaixo pega os dados diretamente do SIDRA/IBGE:


## Importação dos dados da poupança e da fbc
library(sidrar)
data = get_sidra(api='/t/2072/n1/all/v/933,940,941/p/all')

Na sequência, nós fazemos a organização dos dados.


library(tidyverse)
library(lubridate)
library(zoo)

dados <- data %>% select(`Trimestre (Código)`, Variável, Valor) %>%
pivot_wider(names_from=Variável, values_from=Valor) %>%
mutate(date=as.yearqtr(parse_date_time(`Trimestre (Código)`, '%y%q'))) %>%
select(-`Trimestre (Código)`)

Com os dados organizados, nós podemos anualizá-los com o código abaixo.


anuais <- dados %>%
mutate(`Produto Interno Bruto` = rollsum(`Produto Interno Bruto`, k=4, align='right', fill=NA),
`(=) Poupança bruta` = rollsum(`(=) Poupança bruta`, k=4, align='right', fill=NA),
`(-) Formação bruta de capital` = rollsum(`(-) Formação bruta de capital`, k=4, align='right', fill=NA))

Por fim, nós normalizamos nossos dados pelo PIB de forma poder compará-los.


pct <- anuais %>%
mutate(FBC=`(-) Formação bruta de capital`/`Produto Interno Bruto`*100,
Poupança=`(=) Poupança bruta`/`Produto Interno Bruto`*100,
.keep='unused')

O gráfico abaixo ilustra as séries obtidas.

________________

(*) Isso e muito mais você irá aprender no nosso Curso de Teoria Macroeconômica com Laboratórios de R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Qual o hiato do produto no Brasil?

Entender o hiato do produto é fundamental para avaliar o ritmo da economia e as pressões inflacionárias no Brasil. Neste artigo, mostramos como estimar essa variável não observável a partir dos dados do PIB, explorando diferentes metodologias — de regressões simples a modelos estruturais — e discutindo as limitações e incertezas que cercam cada abordagem.

Determinantes do Preço do Ouro: VAR + Linguagem R

Este artigo realiza uma análise econométrica para investigar os determinantes dinâmicos do preço do ouro. Utilizando um modelo Vetorial Autorregressivo (VAR) em R, examinamos o impacto de variáveis como o dólar (DXY), a curva de juros e a incerteza global. Os resultados mostram que um fortalecimento inesperado do dólar tem um efeito negativo e significativo no curto prazo sobre os retornos do ouro, embora a maior parte de sua variância seja explicada por fatores intrínsecos ao seu próprio mercado.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.