Coleta e tratamento de dados das Contas Nacionais Trimestrais com o R

No nosso Curso de Teoria Macroeconômica com Laboratórios de R, incentivamos nossos alunos a aplicarem os conhecimentos de R aprendidos em laboratórios aplicados. Para ilustrar o que vemos no Curso, vou mostrar o laboratório 5, onde é solicitado aos alunos a coleta e tratamento dos dados de poupança e da Formação Bruta de Capital com o R.

O código abaixo pega os dados diretamente do SIDRA/IBGE:


## Importação dos dados da poupança e da fbc
library(sidrar)
data = get_sidra(api='/t/2072/n1/all/v/933,940,941/p/all')

Na sequência, nós fazemos a organização dos dados.


library(tidyverse)
library(lubridate)
library(zoo)

dados <- data %>% select(`Trimestre (Código)`, Variável, Valor) %>%
pivot_wider(names_from=Variável, values_from=Valor) %>%
mutate(date=as.yearqtr(parse_date_time(`Trimestre (Código)`, '%y%q'))) %>%
select(-`Trimestre (Código)`)

Com os dados organizados, nós podemos anualizá-los com o código abaixo.


anuais <- dados %>%
mutate(`Produto Interno Bruto` = rollsum(`Produto Interno Bruto`, k=4, align='right', fill=NA),
`(=) Poupança bruta` = rollsum(`(=) Poupança bruta`, k=4, align='right', fill=NA),
`(-) Formação bruta de capital` = rollsum(`(-) Formação bruta de capital`, k=4, align='right', fill=NA))

Por fim, nós normalizamos nossos dados pelo PIB de forma poder compará-los.


pct <- anuais %>%
mutate(FBC=`(-) Formação bruta de capital`/`Produto Interno Bruto`*100,
Poupança=`(=) Poupança bruta`/`Produto Interno Bruto`*100,
.keep='unused')

O gráfico abaixo ilustra as séries obtidas.

________________

(*) Isso e muito mais você irá aprender no nosso Curso de Teoria Macroeconômica com Laboratórios de R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados do Google Trends no R e no Python

Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.

Contribuição para a Volatilidade [Python]

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.