O câmbio na Era Dilma e os desenvolvimentistas: cadê o desenvolvimento?

No encontro da ANPEC de 2013, just for fun, fui assistir a uma mesa alternativa, que pregava a desindustrialização da economia brasileira. Causada, segundo o interlocutor, veja você, pelo Banco Central, que apreciava a taxa de câmbio com vistas a controlar a inflação. Oi? Pois é. Nessa mesa, sentou ao meu lado um dos expoentes do novo-desenvolvimentismo, que acabou me reconhecendo por causa desse blog. Perguntou-me, entre outras coisas, por que eu tinha virado um economista sério [neoclássico], tendo estudado em escolas eminentemente heterodoxas. Depois disso, o expoente professor, respondendo ao questionamento do apresentador aquela altura, sobre o que deveria ser feito para conter a tal desindustralização, foi incisivoé só deixar o câmbio desvalorizar. Vamos ao  \(\mathbf{R}\)  ver como ficou o câmbio na Era Dilma?

Com o código abaixo, peço a série de câmbio diário nominal venda. O gráfico da série é posto em seguinda.

library(Quandl)

cambio <- Quandl('BCB/1', start_date='2011-01-01', type='zoo')

plot(cambio, lwd=2, xlab='', ylab='R$/US$', main='O câmbio na Era Dilma')

grafico1

Bom, o câmbio era de 1,65 R$/US$ em 03/01/2011 e em 03/09/2015, por essa série do Banco Central, fechou em 3,77 R$/US$. Não custa perguntar, portanto, onde está o desenvolvimento, professor? 🙁

Update: Tem gente criticando o post porque não leu jornal nos últimos quatro anos. Acha que o governo brasileiro não desvalorizou o câmbio de forma intencional? Dá uma lida nesse artigo do ex-ministro Guido Mantega aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.