O câmbio na Era Dilma e os desenvolvimentistas: cadê o desenvolvimento?

No encontro da ANPEC de 2013, just for fun, fui assistir a uma mesa alternativa, que pregava a desindustrialização da economia brasileira. Causada, segundo o interlocutor, veja você, pelo Banco Central, que apreciava a taxa de câmbio com vistas a controlar a inflação. Oi? Pois é. Nessa mesa, sentou ao meu lado um dos expoentes do novo-desenvolvimentismo, que acabou me reconhecendo por causa desse blog. Perguntou-me, entre outras coisas, por que eu tinha virado um economista sério [neoclássico], tendo estudado em escolas eminentemente heterodoxas. Depois disso, o expoente professor, respondendo ao questionamento do apresentador aquela altura, sobre o que deveria ser feito para conter a tal desindustralização, foi incisivoé só deixar o câmbio desvalorizar. Vamos ao  \(\mathbf{R}\)  ver como ficou o câmbio na Era Dilma?

Com o código abaixo, peço a série de câmbio diário nominal venda. O gráfico da série é posto em seguinda.

1
2
3
4
5
library(Quandl)
 
cambio <- Quandl('BCB/1', start_date='2011-01-01', type='zoo')
 
plot(cambio, lwd=2, xlab='', ylab='R$/US$', main='O câmbio na Era Dilma')

grafico1

Bom, o câmbio era de 1,65 R$/US$ em 03/01/2011 e em 03/09/2015, por essa série do Banco Central, fechou em 3,77 R$/US$. Não custa perguntar, portanto, onde está o desenvolvimento, professor? 🙁

Update: Tem gente criticando o post porque não leu jornal nos últimos quatro anos. Acha que o governo brasileiro não desvalorizou o câmbio de forma intencional? Dá uma lida nesse artigo do ex-ministro Guido Mantega aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!