O câmbio na Era Dilma e os desenvolvimentistas: cadê o desenvolvimento?

No encontro da ANPEC de 2013, just for fun, fui assistir a uma mesa alternativa, que pregava a desindustrialização da economia brasileira. Causada, segundo o interlocutor, veja você, pelo Banco Central, que apreciava a taxa de câmbio com vistas a controlar a inflação. Oi? Pois é. Nessa mesa, sentou ao meu lado um dos expoentes do novo-desenvolvimentismo, que acabou me reconhecendo por causa desse blog. Perguntou-me, entre outras coisas, por que eu tinha virado um economista sério [neoclássico], tendo estudado em escolas eminentemente heterodoxas. Depois disso, o expoente professor, respondendo ao questionamento do apresentador aquela altura, sobre o que deveria ser feito para conter a tal desindustralização, foi incisivoé só deixar o câmbio desvalorizar. Vamos ao  \(\mathbf{R}\)  ver como ficou o câmbio na Era Dilma?

Com o código abaixo, peço a série de câmbio diário nominal venda. O gráfico da série é posto em seguinda.

library(Quandl)

cambio <- Quandl('BCB/1', start_date='2011-01-01', type='zoo')

plot(cambio, lwd=2, xlab='', ylab='R$/US$', main='O câmbio na Era Dilma')

grafico1

Bom, o câmbio era de 1,65 R$/US$ em 03/01/2011 e em 03/09/2015, por essa série do Banco Central, fechou em 3,77 R$/US$. Não custa perguntar, portanto, onde está o desenvolvimento, professor? 🙁

Update: Tem gente criticando o post porque não leu jornal nos últimos quatro anos. Acha que o governo brasileiro não desvalorizou o câmbio de forma intencional? Dá uma lida nesse artigo do ex-ministro Guido Mantega aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Aplicando o Time Series Transformer para prever inflação (IPCA)

Neste exercício, exploramos a previsão de séries temporais utilizando o Temporal Fusion Transformer (TFT). O TFT é uma arquitetura de Deep Learning baseada em mecanismos de atenção, desenhada especificamente para lidar com múltiplas variáveis e horizontes de previsão longos, mantendo a interpretabilidade — uma característica frequentemente ausente em modelos de "caixa-preta".

Análise do Payroll norte-americano com Python

O Payroll norte-americano é o termômetro da economia global. No post de hoje, mostro como analisar esse indicador usando Python e as bibliotecas Pandas e Plotnine. Saia do básico e aprenda a visualizar a geração de empregos nos EUA de forma profissional.

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.