Para quem está esperando pelos juros norte-americanos...

library(dygraphs)
library(quantmod)

getSymbols('FEDFUNDS', src='FRED')


dygraph(FEDFUNDS, main = 'Comportamento dos FED Funds',
 xlab='', ylab='% a.a.') %>%
 dyOptions(stackedGraph = TRUE) %>%
 dyRangeSelector(dateWindow = c("1954-07-01", "2015-11-01")) %>%
 dyShading(from='2008-10-01', to='2015-11-01', color='lightblue')

fedfunds

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Devemos usar a métrica MAPE em previsão de demanda?

A previsão de demanda é um componente essencial da análise econômica e empresarial. Para avaliar a precisão das previsões, diversas métricas de erro são utilizadas. Entre elas, o Erro Percentual Absoluto Médio (MAPE - Mean Absolute Percentage Error) é uma das mais conhecidas. Neste artigo discutimos suas vantagens e desvantagens com exemplos.

Regimes da Política Monetária Brasileira com Markov Switching no Python

Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.