Vendo o crescimento do PIB dos EUA em 2020Q1 com o R

Hoje foi divulgado o crescimento do PIB dos Estados Unidos no primeiro trimestre. Houve uma contração anualizada de 4,8%, na comparação com o último trimestre do ano passado. Como ensinamos na parte de Economia Internacional do nosso Curso de Análise de Conjuntura usando o R, é possível pegar os dados do PIB dos Estados Unidos diretamente da base de dados FRED Data. O código a seguir operacionaliza.


library(tidyverse)
library(quantmod)
library(timetk)
getSymbols('A191RL1Q225SBEA', src='FRED')
gdp_change = tk_tbl(A191RL1Q225SBEA,
preserve_index = TRUE, rename_index = 'date')

Observe que eu já estou pegando a variação do PIB em termos anualizados a partir da função getSymbols do pacote quantmod. Com o tibble devidamente organizado com a função tk_tbl do pacote timetk, nós podemos gerar o gráfico abaixo.


filter(gdp_change, date > '1987-01-01') %>%
ggplot(aes(x=date))+
geom_line(aes(y=A191RL1Q225SBEA), size=.8, colour='darkblue')+
geom_hline(yintercept=0, colour='red', linetype='dashed')+
scale_x_date(breaks = date_breaks("1 year"),
labels = date_format("%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1))+
labs(x='', y='Percent Change from Preceding Period',
title='US Real Gross Domestic Product',
caption = 'Fonte: analisemacro.com.br com dados do FRED Data')

____________________

(*) Isso e muito mais você aprende em nosso Curso de Análise de Conjuntura usando o R.


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.