Cointegração e inflação de serviços

cointegracaoNa análise de séries temporais um conceito importante é o de cointegração. Em termos econômicos, diz-se que se duas variáveis possuem alguma relação de longo prazo, então mesmo que as séries contenham tendência, elas irão se comportar de modo semelhante, sendo a diferença entre elas estacionária. É razoável supor, nesse aspecto, que desemprego e inflação sejam variáveis relacionadas no longo termo. A primeira pergunta para verificar cointegração entre elas, é verificar se possuem raiz unitária. Um exemplo nessa direção é tomar o período de 2007M06 a 2014M04, para o desemprego dessazonalizado e a inflação de serviços, acumulada em 12 meses, na economia brasileira. Ambas não rejeitam a hipótese de presença de raiz unitária e pelo teste de Johansen rejeita-se a hipótese de que não são cointegradas. Uma outra forma de ver cointegração é rodar uma regressão via MQO entre as variáveis em nível e fazer um teste de raiz unitária sobre os resíduos da regressão: serão cointegradas se a série de resíduos for estacionária. Além disso, desemprego e inflação de serviços, altamente correlacionadas, passam também em testes de precedência temporal, i.e., o primeiro parece preceder o segundo pelo teste de causalidade de Granger. Em palavras de gente: menos desemprego causa mais inflação de serviços, estes intensivos em mão de obra. Como a expectativa é que o desemprego permaneça baixo no país, a inflação de serviços continuará elevada, pressionando o índice cheio nos próximos anos. Mais uma evidência para que o Banco Central continue tentando reancorar as expectativas. Tenho desagregado a inflação de serviços e trabalhado com previsão do desemprego nas últimas semanas e em breve publico algo mais detalhada a respeito... 🙂

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Regimes da Política Monetária Brasileira com Markov Switching no Python

Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.

Como criar janelas móveis de séries temporais usando o Python

Janelas Móveis/Deslizantes, ou Rolling Windows, são termos frequentes na análise de séries temporais. Mas o que são e como aplicá-las no Python? Neste tutorial, mostramos como essa ferramenta é essencial para a análise de dados utilizando como exemplo a correlação móvel de ações brasileiras.

Como incorporar choques em cenários de previsão?

Neste exercício mostramos como incorar choques no cenário de variáveis exógenas para fins de previsão. Usando como exemplo a previsão do IPCA, através de um modelo de machine learning, mostramos os cuidados a serem tomados e uma forma simples de definir o cenário com os choques. Ao final, apresentamos uma previsão com um suposto choque e uma previsão sem o choque para comparação.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.