Cointegração e inflação de serviços

cointegracaoNa análise de séries temporais um conceito importante é o de cointegração. Em termos econômicos, diz-se que se duas variáveis possuem alguma relação de longo prazo, então mesmo que as séries contenham tendência, elas irão se comportar de modo semelhante, sendo a diferença entre elas estacionária. É razoável supor, nesse aspecto, que desemprego e inflação sejam variáveis relacionadas no longo termo. A primeira pergunta para verificar cointegração entre elas, é verificar se possuem raiz unitária. Um exemplo nessa direção é tomar o período de 2007M06 a 2014M04, para o desemprego dessazonalizado e a inflação de serviços, acumulada em 12 meses, na economia brasileira. Ambas não rejeitam a hipótese de presença de raiz unitária e pelo teste de Johansen rejeita-se a hipótese de que não são cointegradas. Uma outra forma de ver cointegração é rodar uma regressão via MQO entre as variáveis em nível e fazer um teste de raiz unitária sobre os resíduos da regressão: serão cointegradas se a série de resíduos for estacionária. Além disso, desemprego e inflação de serviços, altamente correlacionadas, passam também em testes de precedência temporal, i.e., o primeiro parece preceder o segundo pelo teste de causalidade de Granger. Em palavras de gente: menos desemprego causa mais inflação de serviços, estes intensivos em mão de obra. Como a expectativa é que o desemprego permaneça baixo no país, a inflação de serviços continuará elevada, pressionando o índice cheio nos próximos anos. Mais uma evidência para que o Banco Central continue tentando reancorar as expectativas. Tenho desagregado a inflação de serviços e trabalhado com previsão do desemprego nas últimas semanas e em breve publico algo mais detalhada a respeito... 🙂

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.