Analisando as Contas Nacionais Trimestrais no Python

As Contas Nacionais Trimestrais refletem os dados sobre a geração, distribuição e uso da renda no País. Com ela, é possível avaliar o PIB e seus componentes ao longo do tempo. No post de hoje, vamos avaliar o CNT no Python.

O CNT é construído pelo IBGE, que reúne e calcula os valores do PIB e de seus componentes a cada trimestre. O interessante é que os dados do CNT podem ser obtidos através do Sidra, o repositório de dados do IBGE.

Para importar o CNT é necessário ter as tabelas e configurar os parâmetros que se deseja para obter os dados. As tabelas utilizadas aqui foram as 1620 e 1621. Para realizar o procedimento de extração, foi utilizado a biblioteca sidrapy do Python. Além da obtenção dos dados, fora realizado diversos tratamentos, bem como o calculo de variações do PIB e seus componentes.

Para entender como foi criado os gráficos abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

Vejamos abaixo as variações do PIB:

No gráfico acima, é possível analisar todas as variações construídas por meio de cálculos usando o pandas no Python. Através delas, é possível verificar as elevações e quedas do PIB do país desde 1998 até o terceiro trimestre de 2022. Cada variação tem um significado importante, pois permitem avaliar efeitos imediatos e passados.

Outra forma interessante de avaliar o PIB é através de seus componentes. Vejamos para cada tipo de variação, os seus respectivos resultados para os componentes, tomando como base o terceiro trimestre de 2022.

Variação Marginal

Variação Interanual

Variação Anual

Variação Acumulada no ano

_____________________________________

Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada e aprenda a criar projetos voltados para a Macroeconomia

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.