Analisando as Contas Nacionais Trimestrais no Python

As Contas Nacionais Trimestrais refletem os dados sobre a geração, distribuição e uso da renda no País. Com ela, é possível avaliar o PIB e seus componentes ao longo do tempo. No post de hoje, vamos avaliar o CNT no Python.

O CNT é construído pelo IBGE, que reúne e calcula os valores do PIB e de seus componentes a cada trimestre. O interessante é que os dados do CNT podem ser obtidos através do Sidra, o repositório de dados do IBGE.

Para importar o CNT é necessário ter as tabelas e configurar os parâmetros que se deseja para obter os dados. As tabelas utilizadas aqui foram as 1620 e 1621. Para realizar o procedimento de extração, foi utilizado a biblioteca sidrapy do Python. Além da obtenção dos dados, fora realizado diversos tratamentos, bem como o calculo de variações do PIB e seus componentes.

Para entender como foi criado os gráficos abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

Vejamos abaixo as variações do PIB:

No gráfico acima, é possível analisar todas as variações construídas por meio de cálculos usando o pandas no Python. Através delas, é possível verificar as elevações e quedas do PIB do país desde 1998 até o terceiro trimestre de 2022. Cada variação tem um significado importante, pois permitem avaliar efeitos imediatos e passados.

Outra forma interessante de avaliar o PIB é através de seus componentes. Vejamos para cada tipo de variação, os seus respectivos resultados para os componentes, tomando como base o terceiro trimestre de 2022.

Variação Marginal

Variação Interanual

Variação Anual

Variação Acumulada no ano

_____________________________________

Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada e aprenda a criar projetos voltados para a Macroeconomia

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.