Análise do boletim Focus no Python

O Boletim Focus é uma pesquisa realizada pelo Banco Central do Brasil, que divulga semanalmente as projeções de diversos indicadores macroeconômicos do país. A pesquisa é extremamente útil para entender a conjuntura econômica do país. Para coletar os dados do relatório, podemos utilizar a biblioteca python-bcb, que realiza a conexão com a API do Banco Central e permite realizar a importação dos dados direto para o Python.

Para utilizar o python-bcb é extremamente simples. Primeiro devemos carregar o módulo Expectativas e utilizar suas funções e métodos para realizar a importação.

Utilizamos a função Expectativas() para instanciar com as informações da pesquisa. Salvamos em objeto com o nome "em" para utilizar o método describe() de forma a obtermos as pesquisas disponíveis e conectar com a que desejamos. No caso, queremos obter informações das Expectativas Anuais.

!pip install python-bcb
from bcb import Expectativas
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
# Instancia a classe
em = Expectativas()
# Obtém os entitysets (nome das pesquisas)
em.describe()
</pre>
# Obtém as informações da pesquisa
em.describe('ExpectativasMercadoAnuais')

Com as informações conhecidas sobre o data frame a ser importado, utilizamos o método get_endpoint() para conectar com a API do Banco Central e executar a consulta com .query()

ep = em.get_endpoint('ExpectativasMercadoAnuais')
# Dados do IPCA
ipca_expec = ( ep.query()
 .filter(ep.Indicador == 'IPCA', ep.DataReferencia == 2023)
 .filter(ep.Data >= '2022-01-01')
 .filter(ep.baseCalculo == '0')
 .select(ep.Indicador, ep.Data, ep.Media, ep.Mediana, ep.DataReferencia)
 .collect()
  )
# Formata a coluna de Data para formato datetime
ipca_expec['Data'] = pd.to_datetime(ipca_expec['Data'], format = '%Y-%m-%d')

Em conjunto com query(), utilizamos os métodos do pandas de forma a obter os dados já tratados, com os dados da expectativas do IPCA do ano referente a 2023, coletados em 2022.

Por fim, obtemos o data frame com a Media e a Mediana das projeções divulgadas pelo Boletim Focus nas semanas ao longo de 2022. Abaixo, criamos o gráfico para representar a evolução do indicador.

# Configura o tema do gráfico
## Cores
colors = ['#282f6b', '#b22200', '#eace3f', '#224f20', '#b35c1e', '#419391', '#839c56','#3b89bc']
## Tamanho
theme = {'figure.figsize' : (15, 10)}
## Aplica o tema
sns.set_theme(rc = theme,
              palette = colors)


# cria o gráfico
sns.lineplot(x = 'Data',
             y = 'Mediana',
             data = ipca_expec).set(title = 'Expectativas de Mercado para o IPCA - 2023',
                                    xlabel = '',
                                    ylabel = '% a.a.')
# Adiciona a fonte no gráfico
plt.annotate('Fonte: analisemacro.com.br com dados do BCB/SGS',
            xy = (1.0, -0.07),
            xycoords='axes fraction',
            ha='right',
            va="center",
            fontsize=10)

Abaixo, realizamos o mesmo procedimento com a SELIC, o PIB e o Câmbio.

selic_expec = ( ep.query()
 .filter(ep.Indicador == 'Selic', ep.DataReferencia == 2023)
 .filter(ep.Data >= '2022-01-01')
 .filter(ep.baseCalculo == '0')
 .select(ep.Indicador, ep.Data, ep.Media, ep.Mediana, ep.DataReferencia)
 .collect()
  )
selic_expec['Data'] = pd.to_datetime(selic_expec['Data'], format = '%Y-%m-%d')

# cria o gráfico
sns.lineplot(x = 'Data',
             y = 'Mediana',
             data = selic_expec).set(title = 'Expectativas de Mercado para a SELIC - 2023',
                                     xlabel = '',
                                     ylabel = '% a.a.')
# Adiciona a fonte no gráfico
plt.annotate('Fonte: analisemacro.com.br com dados do BCB/SGS',
            xy = (1.0, -0.07),
            xycoords='axes fraction',
            ha='right',
            va="center",
            fontsize=10)


pib_expec = ( ep.query()
 .filter(ep.Indicador == 'PIB Total', ep.DataReferencia == 2023)
 .filter(ep.Data >= '2022-01-01')
 .filter(ep.baseCalculo == '0')
 .select(ep.Indicador, ep.Data, ep.Media, ep.Mediana, ep.DataReferencia)
 .collect()
)
pib_expec['Data'] = pd.to_datetime(pib_expec['Data'], format = '%Y-%m-%d')

# cria o gráfico
sns.lineplot(x = 'Data', y = 'Mediana', data = pib_expec).set(title = 'Expectativas de Mercado para o PIB - 2023',
                                     xlabel = '',
                                     ylabel = '% a.a.')
# Adiciona a fonte no gráfico
plt.annotate('Fonte: analisemacro.com.br com dados do BCB/SGS',
            xy = (1.0, -0.07),
            xycoords='axes fraction',
            ha='right',
            va="center",
            fontsize=10)

cambio_expec = ( ep.query()
 .filter(ep.Indicador == 'Câmbio', ep.DataReferencia == 2023)
 .filter(ep.Data >= '2022-01-01')
 .filter(ep.baseCalculo == '0')
 .select(ep.Indicador, ep.Data, ep.Media, ep.Mediana, ep.DataReferencia)
 .collect()
)
cambio_expec['Data'] = pd.to_datetime(cambio_expec['Data'], format = '%Y-%m-%d')


# cria o gráfico
sns.lineplot(x = 'Data',
             y = 'Mediana',
             data = cambio_expec).set(title = 'Expectativas de Mercado para o Câmbio - 2023',
                                      xlabel = '',
                                      ylabel = '% a.a.')
# Adiciona a fonte no gráfico
plt.annotate('Fonte: analisemacro.com.br com dados do BCB/SGS',
            xy = (1.0, -0.07),
            xycoords='axes fraction',
            ha='right',
            va="center",
            fontsize=10)

_____________________________________

Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada e aprenda a criar projetos voltados para a Macroeconomia

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando Personas de Analistas com LangGraph

Este post apresenta um estudo de caso sobre a criação de um assistente de pesquisa com o LangGraph, integrando o conceito de human-in-the-loop. O sistema gera personas de analistas a partir de um tema, recebe feedback humano e ajusta as respostas de forma iterativa, garantindo resultados mais precisos e personalizados.

O que é Agentic RAG e o que o diferencia de RAG?

Neste post, explicamos o que é o Agentic RAG, como ele se diferencia do RAG tradicional e apresentamos um estudo de caso construído com base nas Atas do COPOM, mostrando passo a passo como criar um agente que busca, avalia, reescreve e responde perguntas sobre política monetária.

Como Criar um Agente de IA Econometrista

Criar um Agente de IA Econometrista envolve construir um sistema autônomo capaz de entender uma solicitação em linguagem natural, buscar dados econômicos, realizar análises e aplicar modelos econométricos para entregar uma resposta completa. A abordagem mais eficaz é estruturar o sistema em múltiplos agentes especializados, cada um com um papel definido, que colaboram para resolver a tarefa. Neste post abordamos o desenvolvimento deste sistema de IA com Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.