Coleta de dados de mercado de trabalho com o Python

Para realizar uma análise de conjuntura completa, é crucial dominar a habilidade de coletar dados sobre o Mercado de Trabalho. Esse processo pode ser facilitado utilizando o Python, sendo possível importar os dados direto do SIDRA. No post de hoje, mostraremos como é possível realizar essa coleta de forma reprodutível e automática.

Antes de tudo, é necessário escolher as tabelas do SIDRA dos indicadores que se deseja analisar. Aqui buscaremos a tabela 6318, que diz respeito a " Pessoas de 14+ anos (Mil pessoas): ocupados/desocupados na Força de trabalho". Existem diversas outras tabelas interessantes que entregam informações preciosíssimas sobre o Mercado de Trabalho, e que podem ser coletadas utilizando o mesmo método aqui praticado.

Para coletar os dados do SIDRA utilizaremos a biblioteca {sidrapy}, que através dos códigos dos parâmetros oferecidos pela API da plataforma, permite importar os dados para o Python.

Pessoas de 14+ anos (Mil pessoas): ocupados/desocupados na Força de trabalho: "/t/6318/n1/all/v/1641/p/all/c629/all"

Realizamos essa busca na seguinte URL:  https://sidra.ibge.gov.br/tabela/6318, escolhendo os parâmetros de interesse na plataforma e buscando a API em "Links para Compartilhar" no final da página.

Com isso, construímos o código no Python.

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Qual o hiato do produto no Brasil?

Entender o hiato do produto é fundamental para avaliar o ritmo da economia e as pressões inflacionárias no Brasil. Neste artigo, mostramos como estimar essa variável não observável a partir dos dados do PIB, explorando diferentes metodologias — de regressões simples a modelos estruturais — e discutindo as limitações e incertezas que cercam cada abordagem.

Determinantes do Preço do Ouro: VAR + Linguagem R

Este artigo realiza uma análise econométrica para investigar os determinantes dinâmicos do preço do ouro. Utilizando um modelo Vetorial Autorregressivo (VAR) em R, examinamos o impacto de variáveis como o dólar (DXY), a curva de juros e a incerteza global. Os resultados mostram que um fortalecimento inesperado do dólar tem um efeito negativo e significativo no curto prazo sobre os retornos do ouro, embora a maior parte de sua variância seja explicada por fatores intrínsecos ao seu próprio mercado.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.