Coleta de dados de mercado de trabalho com o Python

Para realizar uma análise de conjuntura completa, é crucial dominar a habilidade de coletar dados sobre o Mercado de Trabalho. Esse processo pode ser facilitado utilizando o Python, sendo possível importar os dados direto do SIDRA. No post de hoje, mostraremos como é possível realizar essa coleta de forma reprodutível e automática.

Antes de tudo, é necessário escolher as tabelas do SIDRA dos indicadores que se deseja analisar. Aqui buscaremos a tabela 6318, que diz respeito a " Pessoas de 14+ anos (Mil pessoas): ocupados/desocupados na Força de trabalho". Existem diversas outras tabelas interessantes que entregam informações preciosíssimas sobre o Mercado de Trabalho, e que podem ser coletadas utilizando o mesmo método aqui praticado.

Para coletar os dados do SIDRA utilizaremos a biblioteca {sidrapy}, que através dos códigos dos parâmetros oferecidos pela API da plataforma, permite importar os dados para o Python.

Pessoas de 14+ anos (Mil pessoas): ocupados/desocupados na Força de trabalho: "/t/6318/n1/all/v/1641/p/all/c629/all"

Realizamos essa busca na seguinte URL:  https://sidra.ibge.gov.br/tabela/6318, escolhendo os parâmetros de interesse na plataforma e buscando a API em "Links para Compartilhar" no final da página.

Com isso, construímos o código no Python.

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.