Coleta de dados de mercado de trabalho com o Python

Para realizar uma análise de conjuntura completa, é crucial dominar a habilidade de coletar dados sobre o Mercado de Trabalho. Esse processo pode ser facilitado utilizando o Python, sendo possível importar os dados direto do SIDRA. No post de hoje, mostraremos como é possível realizar essa coleta de forma reprodutível e automática.

Antes de tudo, é necessário escolher as tabelas do SIDRA dos indicadores que se deseja analisar. Aqui buscaremos a tabela 6318, que diz respeito a " Pessoas de 14+ anos (Mil pessoas): ocupados/desocupados na Força de trabalho". Existem diversas outras tabelas interessantes que entregam informações preciosíssimas sobre o Mercado de Trabalho, e que podem ser coletadas utilizando o mesmo método aqui praticado.

Para coletar os dados do SIDRA utilizaremos a biblioteca {sidrapy}, que através dos códigos dos parâmetros oferecidos pela API da plataforma, permite importar os dados para o Python.

Pessoas de 14+ anos (Mil pessoas): ocupados/desocupados na Força de trabalho: "/t/6318/n1/all/v/1641/p/all/c629/all"

Realizamos essa busca na seguinte URL:  https://sidra.ibge.gov.br/tabela/6318, escolhendo os parâmetros de interesse na plataforma e buscando a API em "Links para Compartilhar" no final da página.

Com isso, construímos o código no Python.

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.