Coletando dados do SIDRA com o Python

O SIDRA (Sistema IBGE de Recuperação Automática) é uma plataforma do IBGE criada com o objetivo de consultar as pesquisas criados e disponibilizadas pelo Instituto. A interface permite que sejam acessado através de API's informações e dados sobre indicadores importantes. O objetivo do post de hoje será mostrar como é possível acessar estes dados utilizando o Python, utilizando a série do PIB como exemplo.

A API do SIDRA permite a extração dos dados disponibilizados. Por sorte, existe o {sidrapy} que permite acessar facilmente estes dados e realizar a importação direta para a linguagem.

Apesar de mais ser mais facilitado do que retirar diretamente da API do SIDRA, é necessário alguns conhecimentos de uso da biblioteca e o posterior tratamento de dados. Nosso objetivo neste post será de elencar os procedimento necessário, bem como ensinar como realizar a limpeza.

sidrapy

A biblioteca oferece uma única função, get_table(), que permite através de seus argumentos especificar a série e seus parâmetros para a importação.

Os diferente tipos de parâmetros definem a tabela e suas dimensões (períodos, variáveis, unidades territoriais e classificações/categorias). Iremos elencar a baixo cada parâmetro, como obter e onde se insere na função (para mais observações ver a página de ajuda da API do SIDRA).

  • t (table_code) - é o código da tabela referente ao indicador e a pesquisa;
  • p (period) - utilizado para especificar o período;
  • v (variable) - para especificar as variáveis desejadas;
  • n (territorial_level) - especifica os níveis territoriais;
  • n/ (ibge_territorial_code) - inserido dentro do nível territorial, especificar o código territorial do IBGE;
  • c/ (classification/categories) - especifica as classificações da tabela e suas respectivas categorias.

Para obter a tabela e os códigos, o primeiro passo será entrar na interface do SIDRA e buscar a pesquisa/indicador de interesse através do site e em seu buscador https://sidra.ibge.gov.br/home/

Escolhemos como exemplo a série do PIB sem ajuste sazonal e com ajuste sazonal, referente a tabela 1620 e 1621, respectivamente, que se trata da série das Contas Nacionais Trimestrais.

Através da interface, selecionamos a variável "Série encadeada do índice de volume trimestral (Base: média 1995 = 100) (Número índice)"; Setores e subsetores (categorias) "PIB a preços de mercado"; Trimestre (período) - todo o período; Unidade Territorial "Brasil".

Com efeito, será gerado os parâmetros para API no quadro de links (localizado ao fim da página). No caso da tabela 1620, foi produzido a seguinte API: https://apisidra.ibge.gov.br/values/t/1620/n1/all/v/all/p/all/c11255/90707/d/v583%202

 

O que nos interessa, entretanto, serão os códigos posteriores a /t/, sendo representados pelos parâmetros necessários para utilizar a função get_table() do {sidrapy} de acordo com os caracteres do parâmetros listados acima.

/t/1620/n1/all/v/all/p/all/c11255/90707/d/v583%202

Sendo assim, temos que:

  • t (table_code) = 1620
  • n (territorial_level) = 1
  • n/ (ibge_territorial_code) = all
  • v (variable) = all
  • p (period) = all
  • c/ (categories) = 11255/90707

PIB sem ajuste sazonal

Abaixo, mostraremos como é possível retirar os dados com o get_table() utilizando os parâmetros acima. Veja como cada argumento se insere no contexto de cada parâmetro.

Após a importação, vemos que o dados não estão da forma que gostaríamos, sendo necessário, portanto, a realização de uma limpeza.

O primeiro passo será alterar o nomes da colunas com os nomes da primeira observação, e retirar estes dados do data frame. Também é necessário alterar o tipo de dados da coluna "Valor" para float.

Devemos então alterar os nomes das colunas de interesse e remover o restante das colunas. Deixemos as variáveis que representam o valor da série e o código do trimestre.

Através de uma inspeção no data frame, vemos que a coluna de trimestre está em formato de ano e trimestre numérico (199601, 199602...), devemos realizar um procedimento para que o Python reconheça esta coluna como data.

Para lidar com isto, removemos da coluna o valor numérico referente ao trimestre e alteramos para um valor que se aproxime de um mês relacionado em período de trimestres. Juntamos novamente com o ano em uma nova coluna.

Por fim, utilizamos a função to_datetime() para transformar em formato de data e inserir dentro do índice.

PIB com ajuste sazonal

Realizamos os mesmo procedimento utilizando a tabela 1620 referente ao PIB com ajuste Sazonal.

Criar o gráfico

Por fim, com os dados devidamente tratados, criamos um gráfico de ambas as séries. Antes, porém, iremos unir os data frames e o manipular para o formato long de forma que facilite o uso da função lineplot().

Quer saber mais?

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é Agentic RAG e o que o diferencia de RAG?

Neste post, explicamos o que é o Agentic RAG, como ele se diferencia do RAG tradicional e apresentamos um estudo de caso construído com base nas Atas do COPOM, mostrando passo a passo como criar um agente que busca, avalia, reescreve e responde perguntas sobre política monetária.

Como Criar um Agente de IA Econometrista

Criar um Agente de IA Econometrista envolve construir um sistema autônomo capaz de entender uma solicitação em linguagem natural, buscar dados econômicos, realizar análises e aplicar modelos econométricos para entregar uma resposta completa. A abordagem mais eficaz é estruturar o sistema em múltiplos agentes especializados, cada um com um papel definido, que colaboram para resolver a tarefa. Neste post abordamos o desenvolvimento deste sistema de IA com Python.

Como criar um Agente de IA analista de dados

Agentes de IA podem automatizar a coleta, tratamento e análise de indicadores econômicos, entregando insights prontos para a tomada de decisão. Combinando modelos de linguagem (LLM) avançados com ferramentas de acesso a dados, é possível construir soluções que buscam informações em tempo real e as processam de forma autônoma. Neste post mostramos uma visão geral sobre como isso tudo funciona.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.