Dados alternativos em Macroeconomia

Comumente, ao analisar dados Macroeconômicos, nos preocupamos em utilizar dados de estatísticas oficiais, entretanto, é possível obter insights utilizando outros tipos de dados, como é o caso dos dados alternativos. Um tipo de dado alternativo interessante é obtido através do relatório de mobilidade da comunidade do Google. No post de hoje, vamos analisar os dados deste relatório utilizando o R.

Dados alternativos são dados não tradicionais que fornecem informações úteis para determinada área. No caso do relatório de mobilidade do google (mobility trends), é possível obter informações dos locais de maior mobilidade da população de uma região ou país.

Com a devida análise do mobility trends, podemos saber os setores que estão recebendo maior número de deslocamento, tais como varejo e lazer, mercados e farmácias, parques, estações de transporte público, locais de trabalho e áreas residenciais. Logo, as informações podemos construir formas de capturar os possíveis volumes de venda de determinado setor no curto prazo.

Vamos realizar uma análise do mobility trend do google utilizando o pacote {covid19mobility}, disponível no repositório do Github do autor "covid19r/covid19mobility".

Uma vez instalado, utilizamos a função refresh_covid19mobility_google_country() para importar os dados do Google, que nos fornecerá o relatório para diversos países do mundo, bem como de todos os setores. Portanto, é necessário realizar os devidos filtros antes de realizar a análise

________________________________________

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como analisar o sentimento dos textos do COPOM no Python?

Neste exercício construímos um indicador que busca quantificar o sentimento proveniente das decisões de política monetária no Brasil. Usando técnicas de mineração de texto, implementamos todas as etapas necessárias, desde web scraping e pré-processamento das atas do Comitê de Política Monetária do Banco Central (COPOM), até a criação de tokens e a classificação do sentimento implícito nos textos.

Como importar os textos do COPOM para análise de sentimentos no Python?

Os textos divulgados pelo COPOM, sejam os comunicados ou atas, são o ponto de partida para diversos tipos de análises quantitativas, como a análise de sentimentos, e qualitativas, como uma análise de cenário econômico. Neste artigo, mostramos como coletar estes textos de forma automatizada usando web scrapping e Python.

Como tratar dados no Python? Parte 5: renomeando colunas

Como dar novos nomes significativos para as colunas em uma tabela de dados usando Python? Neste tutorial mostramos os métodos de renomeação de colunas disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.