Dados do Payroll norte-americano com o R

Hoje o U.S. Bureau of Labor Statistics divulgou o dado do nonfarm payroll, ou seja, a quantidade de postos de trabalho não agrícolas criadas/destruídas ao longo do mês. O resultado para março foi de uma queda de 701 mil postos de trabalho. Uma destruição de postos de trabalho muito mais rápida do que a que houve em 2008.

Para visualizar os dados do payroll, podemos usar o pacote quantmod como no código abaixo.


library(quantmod)
library(ggplot2)
library(gridExtra)
library(dplyr)
library(magrittr)
library(scales)

getSymbols('PAYEMS', src='FRED')
data = tibble(date=as.Date(time(PAYEMS)),
payroll=PAYEMS) %>%
mutate(variacao = payroll - lag(payroll,1))

filter(data, date > '2000-01-01') %>%
ggplot(aes(x=date, y=variacao))+
geom_line(size=.8)+
geom_hline(yintercept=0, colour='red', linetype='dashed')+
scale_x_date(breaks = date_breaks("1 year"),
labels = date_format("%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
plot.title = element_text(size=12))+
labs(x='', y='Mil pessoas',
title='Variação mensal de postos de trabalho não-agrícolas nos Estados Unidos',
caption='FOnte: FRED Economic Data (quantmod R Package)')

(*) Isso e muito mais você aprende em nossos Cursos Aplicados de R.

___________


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.