Dados do Payroll norte-americano com o R

Hoje o U.S. Bureau of Labor Statistics divulgou o dado do nonfarm payroll, ou seja, a quantidade de postos de trabalho não agrícolas criadas/destruídas ao longo do mês. O resultado para março foi de uma queda de 701 mil postos de trabalho. Uma destruição de postos de trabalho muito mais rápida do que a que houve em 2008.

Para visualizar os dados do payroll, podemos usar o pacote quantmod como no código abaixo.


library(quantmod)
library(ggplot2)
library(gridExtra)
library(dplyr)
library(magrittr)
library(scales)

getSymbols('PAYEMS', src='FRED')
data = tibble(date=as.Date(time(PAYEMS)),
payroll=PAYEMS) %>%
mutate(variacao = payroll - lag(payroll,1))

filter(data, date > '2000-01-01') %>%
ggplot(aes(x=date, y=variacao))+
geom_line(size=.8)+
geom_hline(yintercept=0, colour='red', linetype='dashed')+
scale_x_date(breaks = date_breaks("1 year"),
labels = date_format("%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
plot.title = element_text(size=12))+
labs(x='', y='Mil pessoas',
title='Variação mensal de postos de trabalho não-agrícolas nos Estados Unidos',
caption='FOnte: FRED Economic Data (quantmod R Package)')

(*) Isso e muito mais você aprende em nossos Cursos Aplicados de R.

___________


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.