Estimando a Inércia Inflacionária usando o Python

Como que a inflação passada pode afetar a inflação presente? É possível mensurar esse efeito, isto é, o grau de persistência da inflação, por meio de um processo autorregressivo de ordem um. No post de hoje, mostramos essa medida usando o Python.

Inércia ou simplesmente persistência não é exclusividade do processo inflacionário. Em uma leitura econométrica, pode-se dizer que a maior parte das variáveis macroeconômicas possui algum grau de persistência, ilustrado por uma autorregressividade positiva. Em outras palavras, se uma variável macroeconômica qualquer puder ser descrita por um processo autorregressivo de ordem um, como em

     \begin{align*} y_t = \alpha y_{t-1} + \varepsilon_t \end{align*}

onde  \alpha > 0 , então diz-se que a variável em questão apresenta algum grau de persistência. E o grau aqui é de suma importância. Isso porque, como sabemos do estudo de séries temporais, se \alpha estiver no intervalo aberto entre 0 e 1, o processo autorregressivo é dito estacionário.

Nesse caso, mesmo que haja um grau elevado de persistência (isto é, \alpha está mais próximo de 1), choques de oferta gerarão efeito, mas se dissiparão ao longo do tempo. Contudo, se \alpha for maior ou igual a 1, a série passa a não ser mais estacionária, o que implica em desvio permanente na ocorrência de um determinado choque sobre a variável em questão.

Isso dito, parece razoável supor que o coeficiente \alpha em 1 nos dará o grau de persistência, para qualquer variável macroeconômica ou de inércia, no caso específico da inflação.

No Python, é possível identificar a inércia inflacionário construindo um código que permita estimar o AR1 em uma janela de tempo, isto é, criar um rolling ARIMA(1,0,0) (ou rolling regression) utilizando a biblioteca statsmodels.

Abaixo, ilustramos o resultado encontrado, tomando como base a variação mensal do IPCA, identificada pelo código 433 no Sistema Gerenciador de Séries Temporais, no período de 01/01/2000 até 01/01/2023.

Para entender como foi criado o gráfico abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

_____________________________________

Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada e aprenda a criar projetos voltados para a Macroeconomia

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.